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* All remaining questions will be answered during the last webinar of
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Disclaimer: The sole responsibility for the content of presentations and information given orally during DYNASTEE webinars lies with
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Overview Data analysis and statistics

@ Statistical modelling Statistical inf
atistical inference

Ti i lysi . . . . L
@ Time series analysis @ "Everything should be made as simple as possible, but not simpler” (Einstein)

© Model validation e Which model? and how complex should it be? Depends on data!

© White noise and autocorrelation function @ Statistics provide the techniques to:

) ) o Estimate model parameters and their uncertainties
© Discrete time models
o Verify and argue that you have found the best model (or rather there is not

e Continuous time models (grey-box) one best model, so we call it a suitable model)

o Maximum likelihood parameter estimation We can: Extract information and draw conclusions from data

© Model selection (the hardest part!) We can: Train models for prediction and use them as basis for optimization

DTU Compute Dynastee webinar September 2020 3/54 DTU Compute Dynastee webinar September 2020 4/54



Time series analysis Time series models

General types of models (can all be tweaked!):
Statistical modeling of dynamical systems @ Static model no dynamics
o Called time series analysis e ARMAX, discrete models based on transfer functions
@ Tons of literature (and software): @ Grey-box, continuous time models, combination of physics
o Wiener, N. (1949). Extrapolation, Interpolation, and Smoothing of Stationary and statistics (stochastic differential equations (SDEs))

Time Series. The MIT Press

e Box, G., Jenkins, G. (1976). Time series analysis: forecasting and control

° ... Static model (linear function)

@ Used in any thinkable application! Measurements = Function(Inputs) + Error

Discrete ARX model (Auto-Regressive with eXogenous input)

Measurements = TransferFun(Inputs) + Error
Dynastee webinar September 2020 6/54 [N , _ < 1/s

Discrete ARMAX model (Auto-Regressive Moving Average with eXogenous input)

Model validation 1 & DYNASTEE White noise and autocorrelation function 2 & DYNASTEE

Statistical model validation: examine the residuals

Residuals from a simple linear regression model

Yi = Bo+ B1xt + &

ye=PBo+ Prixr + & Do you know about:
o @ White noise?
Yr=uet @ AutoCorrelation Function (ACF)?
& =yr—

Residual; = Observation; — Prediction;

Two assumptions:

@ The error is normal distributed: & ~ N(0, (72) (less important with many obs.)

@ The error is independent and identically distributed (i.i.d.):
Dynastee webinar September 2020 9/54 Dynastee webinar September 2020 11/54
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White noise and autocorrelation function

ACF of white noise

x <- rnorm(141)

plot(x, type="n", xlab="Time", ylab="")
points(x)

lines(x, type='h')

G

}

-] ol 2 laﬁf&gﬁfjﬂl }

ok jfmwjz

i

acf (x)

DTU Compute
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Dynastee webinar

White noise and autocorrelation function

We want white noise!

@ We fit the model and then analyze the residuals

September 2020

o If they are not white noise, then we can still improve the model!

DTU Compute

Dynastee webinar

September 2020

= & DYNASTEE

12 /54

== & DYNASTEE
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White noise and autocorrelation function

ACF of non-white noise

x <- filter(rnorm(141), 0.9, "recursive")
plot(x, type="n", xlab="Time", ylab="")
points(x)

lines(x, type='h')

2= & DYNASTEE

- o?jﬁ? ?

-4
L

b ¥

acf (x)
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The ACF:
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White noise and autocorrelation function

Simplest first order RC-system

DTU Compute

Dynastee webinar

September 2020

September 2020
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< o e onse
Simplest RC-system Try a static model

o T¢ external and T} internal temperature at time t = [1,2,...,1] o A simple linear regression model (¢ is the error)

o ODE model @ Not describing dynamics
dTi 1 i e
dr = E(Te - Ti) T} = weT} + ¢

<+ 4 <
Ti

t
—— Predicted

Temperature
2
Il
Temperature

Time Time

[ ] 0 16 /54 DTU Compute Dynastee webinar September 2020 17 /54

Measurement noise added on T; — TI;
i

N
White noise and autocorrelation function 22 & DYNASTEE White noise and autocorrelation function L @ DYNASTEE

Model validation: check i.i.d. of residuals Model validation: Test for i.i.d. with ACF

Are residuals like white noise?

o Check if they are independent and identically distributed TEST if residuals independent of each other using the Auto Correlation Function?
o Is & independent of &_j for all t and k7
Nope! There is a pattern left... :
, St T—
2 : RN
< o e Y — —
° 1% s W 0 5 10 15 20
;, Lag
:: It's not white nose! How do we find a better model?

Fri Sat Sun Mon Tue Wed

Time

DTU Compute Dynastee webinar September 2020 18 /54 DTU Compute Dynastee webinar September 2020 19 /54



< o e o
Discretize the ODE
dT; 1
P )
dt RC
_ An ARX model
It has the solution

Ti=¢ T +w TS, +¢
Ti(t+ At) = Te(t) + e RC (Ty(t) — Te(t)) =Pl el +e

if At =1 and T, is constant between the sample points then

T = e*%T} +(1- e*%)Tf

. _1 L.
since e~ RC is between 0 and 1, then write it as R
i _ i e § |
t+1 = P11 + w1 Ty £ o
@

where ¢; and w; are between 0 and 1.

Add a noise term and we have the ARX model

Fri Sat Sun Mon Tue Wed
i _ i e i _ i e ;
tr1 =0T Ty +eaTy =T g +woiTi g+ Time
Sestember 2020 21/54 September 2020 22,5

10 & DYNASTEE Discrete time models 2 & DYNASTEE
ARX model Check for i.i.d. of residuals

The residuals

. o - . o |
o _ i @B Te Is it likely that this is white noise? Almost!
OT T 4B .
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Validate the model with the residuals ACF

An ARMAX model

Ti= 1 Ti_ +wi T + e+ 01641

-02 00 02 04 06 08 10

QL J
§ S e e
o 77 ) (‘) !3 1‘0 1‘5 2‘0
g Lag
E
F | Now we have white noise residuals, that is want to have after applying the model!
Note that we are validating the one-step prediction residuals: ;11 = Y41 — Gega)e
N ‘ ; ; ‘ ‘ : & =Yt = Urj—1
Fri Sat Sun Mon Tue Wed
Time
Dynastee webinar September 2020 25/54 Dynastee webinar September 2020 26/54
Discrete time models 1« DYNASTEE 1« DYNASTEE
Auto-regressive (AR) model Discrete linear time series models
AR model of order 1 AR model of order p Yi=¢1Yia+ @Yo+ +¢pYiyp
+ &
Yi=¢1Ye1+e ’
ARX model of order p _
ARX model of order 1 Yi=¢1Yia+...+¢pYiyp
+ let,l +...+ wPXt*P
€
Yi=¢1Yia+wiXeq + & e )
ARMAX model of order 1 ARMAX model of order p Ye= 1Y+ + iy
+wu X1 +...+ prtfp
Yi=¢1Yi1 w1 X1 +er+ 0181 +er 011+ ..+ Operp
where &; ~ N(0,02) and i.i.d. where &; ~ N(0,02) and i.i.d.
Use either X or U as the input (just a variable name in the generalized form). Doesn't need to have same order p for the AR, X and MA parts.
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Discrete linear time series models Discrete linear time series models
AR model
$(B)Y: = ¢
On transfer function form
ARX model ARMAX model
¢(B)Y; = w(B)X; + & | w(B) 6(B)
e e
ARMAX model N
¢(B)Y: = w(B)X: + 6(B)e; | Y; = Ho,(B)X; + Hg(B)e
@ & ~ N(0,0%) and i.i.d. where H,,(B) and Hy(B) are a transfer functions
@ B is the back-shift operator B¥Y; = Y, ’
@ ¢(B) =1+ ¢1B+ B> +...+ B
@ w(B) =w B+ wB+... + wpBP
@ 9(B) =1+61B+6:B>+...+6,B
Biyesics waibinar September 2020 29/54 Biyesies ey September 2020 30/54
£ < ovwastee &« ovnasTee
How to estimate parameters in discrete TS models Continuous time series models

Fit (in R)

@ ARX models with linear regression (closed form optimization, always give the

optimum, in R 1n0) Introduction to grey-box modelling

@ ARMA in Ris in arima()
@ ARMAX in R can be fitted with the marima and several other packages a nd ctsm r

And we can tweak and also make non-linear discrete models in many ways!
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Continuous time models (grey-box)

= & DYNASTEE

ctsmr

Continuous Time Stochastic Modelling in R

more correctly

Continuous-Discrete Time Stochastic Modelling in R

DTU Compute

Dynastee webinar September 2020 34 /54

Continuous time models (grey-box)

== & DYNASTEE

The model class

ctsmr implements a state space model with:
Continuous time stochastic differential system equations (SDE)
Xy = f(Xe, Uy, £,0)dt 4+ g(X;, Uy, t,0)dBy
Discrete time measurement equations
Yy =h(Xy, up, t,0) +e , e € N(0,S(uy, ty,0))

@ Underlying physics (system, states) modelled using continuous SDEs.
@ Some (or all) states are observed in discrete time.

DTU Compute

Dynastee webinar September 2020 36 /54

Grey-box modelling

White Grey Black

Deterministic Data
equations

Detailed
submodels

Physiological
knowledge

Physiological
knowledge

Figure: Ak et al. 2012

Bridges the gap between physical and statistical modelling.
THERE is a manual on ctsm.info

DTU Compute Dynastee webinar September 2020 35/54
Continuous time models (grey-box) 22 & DYNASTEE

Write up the physical model!

This is easier to work with (if you know the physics behind the system)!

The ODE

ity 1
T Ric(Te —Tj)

== & DYNASTEE

Just needs a diffusion term to make into the system equation

state drift term diffusion term

1
dT; = E(Te — Ty)dt + cydw

and together with the measurement equation

observation state error

Yro="Tis +tex , &€ N(0,0) and i.i.d.

it forms a grey-box model.

DTU Compute

Dynastee webinar September 2020
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http://ctsm.info

Wuuups Define a GB model

Install the ctsm-r package from ctsm.info.

This particular models are actually unidentifiable!!
) Define the model:
R and C cannot be separated (change one, then the other accordingly and the

model prediction is equal (same goes for ¢; and w1)) o ol
v moae <- ctsm$new

. . . model$addSystem(dTi ~ ( 1/tau*(Te-Ti) )*dt + exp(pll)*dwl)
The time constant RC = T is used instead

model$addInput (Te)
1
de — (Te _ Tl)dt + U’id(,(] model$addObs (yTi ~ Ti)
RCt
o model$setVariance(yTi ~ exp(ell))
v
Dynastee webinar September 2020 38/54 Dynastee webinar September 2020 39 /54

% & DYNASTEE Continuous time models (grey-box) 2 & DYNASTEE
Fit the model Validate the model

Check the one-step prediction residuals:

val <- predict(fit)[[1]]

Set initial values and bounds for the estimation: residualsgb <- unlist(X$yTi - val$output$pred)

model$setParameter( Ti = c(init=5 ,1b=-5 ,ub=20 ) ) acf (residualsgb)

model$setParameter( tau = c(init=10 ,1b=1E-2 ,ub=200 ) )
model$setParameter( pll = c(init=0.01 ,1b=-30 ,ub=10 ) )

model$setParameter( ell = c(init=0.01 ,1b=-50 ,ub=10 ) ) S
o |
Run the parameter estimation: -
© -
fit <- model$estimate (X) § g
o
1 1 T 1 ! 1 L
T T T T T T T
P
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ctsm.info

DTU Compute

DTU Compute

Continuous time models (grey-box)

Discrete ARMAX is equivalent to continuous SDE model

One-step predictions of ARMAX and grey-box are almost equal:

— T,

— T

—— Predicted ARMAX
Predicted grey-box

Temperature

i

Time

Dynastee webinar September 2020

Parameter estimation with the likelihood

An example, we have:
o A model with two parameters Y; ~ N(u,c?)

e n observations (y1,Y2,-..,Yn)

The likelihood is defined by the joint probability density function (pdf) of the
observations

L(p,0) = p(y1,y2, - - Ynlpt, )

Hence, the model defines the pdf as a function of the parameters (the
observations are not varying).

Independence of the observations simplifies it to

L(k,0) = f{p(yimm

22 & DYNASTEE

42/54

22 & DYNASTEE
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Continuous time models (grey-box)

DTU Compute

22 & DYNASTEE

Discrete ARMAX is equivalent to continuous SDE model!

Plot the ARMAX and GB residuals:

Residuals
0.0 0.2
1 1
0o
o @%mg ©
e
g
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©
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Fri Sat Sun Mon Tue Wed
Time
DTU Compute Dynastee webinar September 2020

Maximum likelihood estimation

Maximum likelihood estimation (MLE)

Parameter estimation by maximizing the likelihood function

6= L(6
argrgneg( (0))

Due to numerical properties we always minimize the negative log-likelihood

0= argreréig (—In(L(0))

43/54

Maximum likelihood parameter estimation 2 & DYNASTEE

So in the example 8 = (y,0)

Dynastee webinar September 2020
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% < ot < ot
Likelihood for time correlated data Likelihood for time correlated data

If Gaussian
Given a time series of measurements Yy

Jjk—1 = Elyk|Vi-1,0
L(6) = p(Vn|6) D=1 = Elyel Vi1, 0]
(

Pyji—1 = Vv Vi1, 0]

= N/YN-1,---/Y0 0 = ]
PN, Y Y0l0) € = Yk — Yklk—1
N . . .
= Hp(yk|yk—1/9) p(v0l6) then the likelihood is
k=1
Essentially, p(yx|Vk_1,0) is the pdf of the one-step ahead prediction Lo N eXP(_%EZP;;‘;,lfk)
. . . . .. - l
Thus assuming independence of the one-step predictions (so i.i.d. error) 1 /|Pk|k—1|\/ﬁ
Dynastee webinar September 2020 47/54 Dynastee webinar September 2020 48 /54

2 orasTee 2 ovastee
Kalman filter Grey-box model MLE

Prediction step

Prior k led P 1 kel 1 1 -
rior no(\)n; :taiz S &k—l\k—l —> Basedonedg. Steps for maximum likelihood estimation of a grey-box model
. k—1lk—1 physical model © Load data
Next timestep Pik—1 @ Define a model
k+—k+1 Xk|k—1 S
T ¢ © Define initial values and parameter bounds
Pk Update step Measurements @ Run an optimizer to find the parameter values maximizing the likelihood (run
Xy, < Compare prediction  <— the Kalman filter many times)
to measurements .
¢ @ Interpret and validate the result:
OUtP‘;t estimate o Check the optimizer convergence (e.g. no parameters at bounds)
of state o Check estimated values and statistics
o Validate the model by analyzing residuals

Figure: " Basic concept of Kalman filtering” by Petteri Aimonen. Wikipedia .
Show an example in R
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2 omastee Y —
Model complexity Model selection

The big question!!

How to select a suitable model complexity, neither underfitted nor overfitted! The suitable model is a compromise:
Both which inputs, the structure. Number of parameters increase complexity.

@ Not too complex (overfitted) and not too simple (underfitted).

@ Use statistical tests to find out which model is better:

High Bias Low Bias

Low Variance High Variance

-~ - o Nested models, use e.g. F-test or likelihood ratio-test

e Un-nested models, use e.g. AIC or BIC

Test Sample

Different strategies:

@ Forward selection: Start with the simplest model and extend step-wise

Underfitting | Overfitting
_—

/

Training Sample

@ Backward selection: Start with the full model and remove terms step-wise

Bias trade-off
V.

Low High
Model Complexity

Figure from https://gerardnico.com/data_mining/bias_trade-off.
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2 < onse
ctsmr R package

See the website ctsm.info
@ Installation needs compilers
@ Documentation and examples

@ Nice tricks

@ Literature list with overview of studies where ctsm has been used
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