

Case study: Round robin test box

- A simplified building has been considered as a case study.
 - Round robin test box Annex 58
- Its detailed and accurate knowledge reinforces and complements the validation criteria.
- The robustness of the method has been analysed by comparing the results from a long testing period including different test and weather conditions.
 - > Benchmark data and set-up

GOBERNO DE ERRAN DE ERRAN ENROVACIÓN ENROVACIÓN COMPARIA ENROVACIÓN

Construction of candidate models

HYPOTHESES DERIVED FROM PHYSICAL KNOWLEDGE OF THE SYSTEM

Candidate models must be written trying to give answer to the following questions

- What is the system to which the energy balance equation will be referred to?. Is a volume?, is a flat surface?
- What are the phenomena theoretically in the energy balance equation?
- Which of these phenomena are relevant in practice to the considered case study and given test conditions?
- What is the most efficient way of modelling each relevant phenomena?. Efficiency is referred to model accuracy, cost of measurement devices, and model simplicity.
- Which are the main driving variables of each of the phenomena recognised as relevant for the considered case study?
- Which variables must be considered inputs and outputs according to causality.

If it is not possible to answer some of these questions a priory, **several candidate models** according to the different possibilities can be considered and evaluated. 37

RC Models Identified with LORD. Possibilities

1. Mono-dimensional analysis of opaque walls

- To obtain the U value of the opaque walls
- Several candidate models. Relevant options:
 - > 3 to 7 nodes
 - 🕨 Outputs: Τi, φ
 - Including and non-including solar radiation
 - Systematic analysis of the ceiling considering all the options
 - > Analysis of floor and left, right, back walls using best model found for the ceiling

2. Tri-dimensional analysis of the whole building

- To obtain the UA and gA values of the whole building envelope
 - Several candidate models. Relevant options:
 - > 3 to 7 nodes representing opaque walls
 - Parallel branch representing the windov
 - Outputs: T_i, P_{heating}
 - All candidate models including G_v
 - Evaluation of best model found for the considering non-measured variables

44

DYNASTEE Published papers relevant to this method 🛰 M.J. Jiménez, H. Madsen, H. Bloem, B. Dammann. 2008. "Estimation of Non-linear Continuous Time Models for the Heat Exchange Dynamics of Building Integrated Photovoltaic modules". Energy and Buildings. 40(2), pp. 157-167. DOI: 10.1016/j.enbuild.2007.02.026 N. Friling, M.J. Jiménez, J.J. Bloem, H. Madsen. 2009. "Modelling the heat dynamics of building integrated and ventilated photovoltaic modules". Energy and Buildings. 41(10), pp. 1051-1057. DOI: 10.1016/j.enbuild.2009.05.018 Jiménez M.J., Madsen H. 2008. "Models for Describing the Thermal Characteristics of Building Components". Número especial sobre ensayos de cerramientos en condiciones reales. Building and Environment. 43(2), pp. 152-162. DOI: 10.1016/j.buildenv.2006.10.029 Ciemat 51

