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Abstract. The paper will present the analysis of high quality experimental data from a test device 
by means of two different dynamic methodologies. The aim of this testing and analysis approach 
is to train people in performing the experimental work on-site for the development of a skill that 
gives confidence in reporting results for building energy performance assessment. The expertise, 
that forms the basis for this paper comes from several EU research projects on building energy 
performance evaluation. A building physics perspective based on physical knowledge of heat 
transfer combined with advanced statistical techniques are essential for the success. The building 
physicist needs the statistician and vice versa. The work supports the auditor’s need in the 
framework of building energy labelling. The increased complexity of the analysis steps 
demonstrates clearly that a proper assessment needs a well-defined approach that offers the 
application of different analysis techniques, such as discrete or continuous time methods. These 
steps will be briefly presented in the paper. For doing so, several high quality data series are made 
available. The paper will discuss the test environment, the creation of high quality data series that 
represents the increased complexity of going from assessing wall thermal properties to a whole 
building structure heat loss coefficient. Two methods are discussed and applied to experimental 
data in more detail. The lumped parameter method (LORD) and the continuous time method 
(CTSM-R), will be demonstrated on excited indoor temperature and co-heating data. Uncertainty 
and error sources in the whole evaluation process are presented as well as differences between 
these two methods which are explained on the same data. The experience gained during almost 
ten years of training to about 200 students, researchers and building energy professionals has 
convinced the authors that the approach presented is highly recommended to develop the 
necessary skill. 

 

1. INTRODUCTION 
 

Careful examination of energy consumption in the building sector, which is about 39% (2019) of the final 
energy consumption in EU-28 is needed in order to identify the specific areas for energy savings. Due to 
improved insulation levels in buildings the potential for energy savings shifts to the more dynamic energy use 
sectors such as gains from appliances, high energy demand and consumer behaviour. Today, more and more 
data related to building and building components originate from outdoor testing under time-varying and 
dynamic conditions, or from real life use of buildings. Dynamic evaluation methods are techniques to analyse 
time series of data related to dynamic processes and to identify typical parameters of the physical processes 
for evaluation. 

The objective of training is to develop a common methodology to assess the thermal characteristics of building 
components and to assess whole building energy performance. In addition training should bridge the gap 
between expertise from both physical and mathematical/statistical analysis and modelling practice. The aim is 
also to gain a better understanding of the possible approaches to achieve a satisfactory analysis for the building 
energy performance indicator. The goal is not to promote a specific analysis or simulation tool but rather to 
transfer the knowledge on a common methodology. Quality benchmark data, as a reliable reference and 
presented below, is required to develop methods and models. 

 
1 hans.bloem@inive.org 



Research on the energy performance of buildings is concerned with various levels of complexity, ranging from 
the impact of weather and climate to user behaviour in occupied buildings. In this general context, it can be 
divided in to three major areas: 1) building components, 2) test cells and unoccupied buildings in real climate 
and 3) occupied buildings. This paper deals with high quality data from outdoor experiments of a test box, 
addressing 2 out of these 3 areas. 
 

The development of dedicated software tools to identify thermal parameters from physical systems has 
progressed hand in hand with the increasing processing speed of computing hardware. Software tools like 
CTSM-R [1], LORD [2] or the System Identification Toolbox in the MATLAB environment [3] are good 
examples of the developments over the past 25 years. 
 
1.1 How to obtain results using different models and methods from experimental data? 

System identification is a well-developed discipline, and is considered as a systems science discipline. Many 
textbooks are available; recommended is [4]. Here it is used to estimate certain physical parameters of a 
dynamic system. A wide range of system identification techniques is now being applied to the analysis 
problems involved with estimation of thermal characteristic properties of buildings and building components, 
which is an important and interesting area [5]. Specific parameter identification techniques enable the 
assessment of unknown thermal parameters in building physical systems and in particular those systems that 
have dynamic or non-linear behaviour (such as ventilated facades). Applying system identification techniques 
on physical systems requires throughout knowledge of the physical system [6]. For buildings it is important to 
know what the impact is of cold-bridges, corner effects, etc. The researchers goal is to estimate physical 
parameters by using mathematical models. In most cases the calculation from mathematical parameters, which 
derive from the chosen model, to physical parameters, in this case the thermal transfer coefficient and solar 
aperture, introduces another point for discussion between physicists and mathematicians. Physicists like to 
compare the obtained values of the estimates from different methods, however they do not always realise that 
the way they are obtained from mathematics might be different. On the other hand, for the determination of 
the thermal and solar characteristics the knowledge of the heat flow through the test room envelope is an 
absolute must, in order to be able to obtain the properties of the test component decoupled from the device 
under test. 

The here presented analysis and validation approaches will be illustrated step by step using simple and well 
documented case studies dealing with increased complexity. The following approaches will be considered: 
average and linear regression methods, transfer function models and continuous-time state space models. The 
software tool LORD is applied as well as CTSM-R and routines in the R-environment [7]. 

The considered case studies include a wide representation of the physical phenomena that are present in actual 
buildings. The aim is to focus on how to transfer the available information of the physical systems to different 
mathematical models, e.g. the importance of model simplification of building physics represented by measured 
signals. The different approaches will be presented “bottom up”, starting from the simplest and gradually 
increasing complexity. This complexity will be introduced by using data-series for analysis of physical 
processes that take place in a test box under real conditions. In particular the variability of the environments 
and the uncertainty of data will be discussed, e.g. how to deal with measured data and unmeasured phenomena 
and how to build a mathematical model based on the available input. 

 

Figure 1a (conduction only), 1b (air-gap case) and 1c (enclosed volume). 

 
The training exercises focuses on energy flows through walls (mainly by conduction; Figure 1a). Initial 
assessment proposed is based on physical processes that are presented by mathematical models. Thermal 
characteristic parameters are the thermal resistance (R), capacitance (C) and time constant (τ). See below. 
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Impact of solar radiation, convection and variable climate conditions will be presented. Analysis methods that 
will be used have an increased complexity and will focus on the energy balance while dealing with all physical 
processes, e.g. conduction, convection and radiation. However real applications are more complex systems 
such as facades with air gap (Figure 1b) as well as whole buildings that will be considered as closed 
volume/surface environments (Figure 1c). 

A mathematical model represents reality, however, by definition, it is always a simplification of the true 
physical system. The analyst is responsible for defining the model and hence the simplification of it. Therefore 
benchmark tests should reveal the ability of the final method and model to analyse data from in-situ 
measurements correctly, within defined uncertainty limits. 

Discrete Time Method 

The software tool LORD builds on a lumped parameter (RC-network) model. The original method 
implemented in LORD (a user-friendly software tool with graphical user interface) is the Output Error Method 
(OEM). A new quality in the analysis of outdoor experiments can be achieved by using advanced statistical 
methods: e.g. LORD also includes the Prediction Error Method (PEM) to make it more powerful. This tool is 
easy to use and specially adapted to the requirements of testing under real climate. The selection and creation 
of models is one of the items which is simplified in a graphical way. LORD provide all the available statistical 
methods in an easily applicable way and includes instructions and data for self-training. The development of 
the software tool LORD has involved close cooperation of mathematicians and the intended users, building 
physicists. It is available on request at  www.dynastee.info 

  
Continuous Time Method  

CTSM-R (2015) is an R package [7] providing a framework for identifying and estimating stochastic grey-box 
models. A grey-box model consists of a set of stochastic differential equations coupled with a set of discrete 
time observation equations, which describe the dynamics of a physical system and how it is observed. The 
grey-box models can include both system and measurement noise, and both nonlinear and nonstationary 
systems can be modelled using CTSM-R. It has been successfully applied to a wide range of data-driven 
modelling applications: heat dynamics of walls and buildings, dynamics of heat exchangers, radiators and 
thermostats, solar thermal collectors, building integrated photovoltaic systems and more. It is possible to 
generate both pure simulation and k-step prediction estimates of the states and the outputs, filtered estimates 
of the states and, for nonlinear models, smoothed estimates of the states. By using a continuous time 
formulation of the dynamics and discrete time measurements the framework bridges the gap between physical 
and statistical modelling. Continuous Time Stochastic Modelling for R or CTSM-R is a free, open source and 
cross platform tool for identifying physical models using real time series data. How to use CTSM-R is 
described in detail in the CTSM-R user's guide and reference manual [1] (2018). 

Both methods mentioned above are useful for most standard buildings and building components and are 
applied in this paper. The difference between discrete and continuous time method can easily be derived from 
comparing the mathematical expressions for the increment of the timestep. 

Discrete time; 
௑ೖశభ ି ௑ೖ

∆்  
= 𝐴𝑋௞    eq.1 

Continuous time; 𝑋௞ାଵ 
=  𝑒஺∆்𝑋௞   eq.2 

In general two types of criteria for parameter identification can be distinguished in: the Prediction Error 
Method (PEM) and the Output Error Method (OEM). The OEM is a special case of the PEM for the condition 
that H(q) = 1, when the following formula is taken into consideration: 

Q t G q u t H q e t( ) ( ) ( ) ( ) ( )        eq.3 

The Prediction Error Method (PEM, applied in CTSM-R) is based on statistical models assessing parameters 
by minimising the error between a k-step (usually k=1) ahead prediction and the measured output. Some 
characteristics of PEM are that it is more sensitive to high frequency parameters and will be disturbed if 
residuals are auto correlated. Obviously, PEM requires more calculation time. 
The Output Error Method (OEM) or Simulation Method (like in LORD) is based on deterministic models and 
assesses parameters by minimising the error between simulation and measurement over a whole test period.  
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Figure 2. Minimisation by the Least Squares Method. 

 
Some characteristics of the method are that it is more sensitive to low frequency parameters and gives too 
optimistic confidence intervals if residuals (here simulation errors) are auto correlated. 
 
 
1.2 GENERAL CONCEPT 
In brief, the general approach for analysis is to plot the available data (see figure 6) and decide which data 
could be used for analysis. Some basic knowledge of the physical processes of heat transfer is required to do 
so. Apply the average method to get a first impression of the expected result. In a further step apply a linear 
regression method and get an idea of the uncertainty. Note that NO dynamic information can be obtained from 
either average or linear regression method. For assessing dynamic characteristics the analysis requires 
dedicated methods for which two are presented below.  
The measured data leads to ‘raw data’ with a certain accuracy. It should be stored and documented for later 
analysis or modelling work. It leads to the following overview of the interaction between experimental work 
and analysis of the obtained measured data. It can be applied to heat transfer through the building envelope, 
either a wall or the whole building. 
 
General analysis approach. 
The objective is the identification of a mathematical modelling with application to energy performance 
assessment in the built environment. The problem is stated as follow: how to go from many measured data to 
a few estimated values and try to get confidence in the whole process of identifying the searched parameters 
of the system. This can be achieved by:  

 Plot the data and try to understand what it represents. Are the signals as you expect them to be, in 
particular temperatures. EXCEL is often used but any software package that you are acquainted with, 
will do. 

 Apply the average method (several ways to do so). No dynamic but steady state conditions 
 Apply a regression method; it is a bit more dynamic and linear. 
 Any other method, such as ARX and grey box models; dynamic methods for which dedicated routines 

should be used 
 
Averaging and filtering 
How to get from many observations as input for the calculation process to one or a few limited output values 
for reporting? In that process the accuracy of input data, the propagation of the errors in the calculation process 
and the required accuracy of the reported value are of high importance. Once data has been produced (raw 
data), from a dedicated experiment, it is assumed that these data contain all information describing the physical 
processes that a mathematical model is supposed to analyze. Treatment of raw data is therefore crucial and 
should be performed by someone who has knowledge about the physical processes as well as the experimental 
set-up. In fact, by averaging and filtering in the space and time domain, thus by reducing the data, one has to 
understand that dynamic information will be lost. 
 
  



Table 1: Process to obtain a few estimated values (characteristic parameters) from many measured data. 
Main elements of the methodology. 

INPUT METHODOLOGY OUTPUT 

Many observations from time 
and space ; raw data 
Physical processes 
Literature 
General knowledge 

Description of physical processes into 
mathematical equations. 
Method should fulfil the aim taking into 
account the searched output 

Limited value(s) 
Period; annual, daily, hourly 
Performance 
Efficiency; reference value 
Data for simulation 

 Pre-processing, Model choice 
Iteration process, Post-processing 
Statistical tests, Model validation 

External tests 

 

 

 

Averaging is frequently used as filtering and also as resampling technique. Other filtering and resampling 
techniques can be applied. Discussing filtering and resampling techniques is out of the scope of this document, 
however some relevant issues regarding their application are discussed in the following. 

 Averaging techniques to obtain an idea about the thermal resistance 
 Apply different length for period. Split the whole period in 3 or more shorter periods (up to a day) 
 Apply increasing length and investigate the result  
 Standard deviation of the different average periods. 
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In general any averaging and filtering carried out must be justified, explaining its interpretation, which are the 
beneficial performances that are expected applying it, why improvements are expected, etc. The figures below 
show some results of averaging data. 

 
Figure 3a and 3b 

 
Dynamics of physical processes are supposed to be represented in the data. Sometimes it should be carefully 
considered as contributing to the physical process that is being studied. In general solar radiation is giving 
problems to the correct interpretation of sensor observations. In the figure 4, an example is given of the effect 
of solar radiation on sensors. The heatflux given by the sensors not hit by solar radiation is lower than the 
heatflux given by sensors hit by solar radiation. Compare the heatflux of the ceiling (yellow) with that of the 
floor (blue) or right wall (red). One important question here is: does the sensor installation guarantee that the 
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heatfluxes of the sensing elements are the same as the fluxes through the measured surfaces, that are much 
larger than the sensor? In this case averaging would contribute to an error in the analysis process. Good 
documentation of experiment set up including detailed description of sensor installation is an indispensable 
complement for high quality data sets, and would be very helpful to answer this kind of questions. 

 
Figure 4. Heat flux and solar radiation signals for 7 December. 

 
As an example the raw data from period 16 can be considered; see figure 5. There are 17279 records, each 
containing 45 observations that easily can be placed in Excel. To plot all sensors in one graph would give too 
much and too complicated information to draw useful conclusions. As a first attempt, it has been decided to 
take the Indoor Surface Temperatures of each wall, as well as the air temperatures in the center of the box. 
Clearly can be recognized that the whole period is composed of 12 days and a day-night sequence can be seen.  

 
Figure 5. Indoor Surface Temperatures (6+2 sensors) for the whole data series 16. 

 
The signals differ in amplitude and the data require a more closer look. So, one day is selected, 7 December, 
to study the details of the signals as can be found in figure 6. Almost all 8 signals behave different which is 
not a problem if the reason for the differences can be traced. First of all, there are 6 surface temperatures placed 
in the center of each wall. Note that one of the sensors (blue) is on the glazing of the wall oriented to the South 
and is hit by solar radiation. It indicates when more or less the night is finished and the sun comes up. All 
temperatures start to rise. The red signal corresponds with the sensor on the West wall and rises immediately 



when the solar radiation hits the sensor. During the morning the sun goes further up and at a certain moment 
hits the sensor on the floor with the maximum around noon. Note that the radiation is not hitting the sensors 
on the West and East wall. What also can be seen is that both air temperature sensors (dark blue and brown) 
tend to increase and reach their maximum, late in the afternoon. Meanwhile the solar radiation hits the East 
wall and hence the sensor. Once the sun disappears, the walls and window glazing cool down, a process that 
continues until the morning hours. Note that the window glazing is cooler than the walls and the floor is a bit 
warmer; all according to the physical processes of heat transfer. 

 
Figure 6. One day; 7 December shows details. 

 
Now the question is if the data can be used for the analysis? Should the disturbed sensor readings be excluded 
or can it be used in an intelligent way? One of the steps forward could be to analyze the rear wall since it is 
not exposed to solar radiation whereas the composition of the wall is similar to the other walls, except for the 
window part. Since all walls are measured in detail, results can be used for more complex models. 
The application of filtering techniques is useful when there is certainty that their effect is removing information 
in the data that doesn’t correspond to the phenomena that we are studying in the building or building 
component. However filtering and averaging could have harmful effects if it removes relevant information to 
the process under study. A next example is the study of the heatloss coefficient of the glazing part of the 
window façade. 
 

Table 2. Daily averaged values for the glazing part. 
 

 
 

'Tsi_glazing' 'Ti' 'Tse_glazing' 'Te' DT HF_glazing Series 16'
06/12/2013 19.75 22.90 19.56 5.25 17.65 18.34
07/12/2013 16.30 18.99 17.32 4.75 14.23 15.05
08/12/2013 14.90 17.33 17.07 4.88 12.45 13.31
09/12/2013 21.04 23.51 19.40 6.76 16.74 18.66
10/12/2013 24.05 27.10 19.95 7.37 19.73 21.25
11/12/2013 26.33 29.75 19.68 7.47 22.28 25.47
12/12/2013 18.70 21.42 17.55 6.05 15.37 17.01
13/12/2013 16.52 18.86 17.81 6.38 12.49 13.01
14/12/2013 15.94 17.82 20.24 8.11 9.71 10.16
15/12/2013 14.84 16.67 20.09 6.96 9.70 9.73
16/12/2013 20.24 22.57 18.61 5.78 16.79 20.47
17/12/2013 28.17 31.14 21.83 7.23 23.91 27.62

Average 15.92 17.51
U-value = 1.10 W/m 2 K



 
Figure 7. Plotted daily averaged values for the heatflux and temperature difference. 

 
By the averaging method, a value for the glazing U-value of 1.10 (W/m2K) is derived. Daily averaged values 
for the relation between the heat flux and the temperature difference gives 1.11 (W/m2K) whereas the linear 
regression method gives a value for the U-value of 1.11 ±0.04 (W/m2K). 
 
Definitions of used expressions. 
Definition given by International standards are used in this document - particularly the following included in 
ISO 7345:1987 (Thermal Insulation – Physical Quantities and Definitions): 
Thermal resistance, R: Temperature difference divided by the density of heat flow rate in the steady state 
condition. Units: m2K/W. 
Thermal conductance, : Reciprocal of thermal resistance from surface to surface under conditions of 
uniform density of heat flow rate. Units: W/(m2K). 
Thermal transmittance, U: Heat flow rate in the steady state divided by area and by the temperature 
difference between the surroundings on each side of a system. Units: W/(m2K). 
The following are defined by the ISO 13790:2008(E) (Energy performance of buildings - Calculation of energy 
use for space heating and cooling). 
Heat transfer coefficient: Heat flow rate divided by the temperature difference between two environments; 
specifically used for heat transfer coefficient by transmission or ventilation. Units: W/K. 
Transmission heat transfer coefficient: Heat flow rate due to thermal transmission through the fabric of a 
building, divided by the difference between the environment temperatures on either side of the construction. 
Units: W/K. 
Ventilation heat transfer coefficient: Heat flow rate due to air entering an enclosed space, either by 
infiltration or ventilation, divided by the difference between the internal air temperature and the supply air 
temperature. Units: W/K. 
Characterization by system identification techniques requires a lumped representation of building fabric. The 
following parameters are usually considered in such lumped representation of a given building envelope: 
 
Often the following parameters have to be identified 
Overall thermal transmittance coefficient UA: the heat flow rate in the steady state divided by the 
temperature difference between the surroundings on each side of the system or component, in W/K. For the 1-
D case the U-value, in W/m2K. 
Total solar energy transmittance or solar aperture gA: the heat flow rate leaving the component at the inside 
surface, under steady state conditions, caused by solar radiation incident at the outside surface, divided by the 
intensity of incident solar radiation on the component, in m2. For the 1-D case the g-value [-]. 
 



The main conclusion from this introductory section is that in general one has to understand what a measured 
signal represents. What information is available from the single sensor signal or from a group of signals (such 
as the average from 7 indoor air temperatures that are supposed to represent one indoor air temperature)? To 
get more knowledge about measurements and what information is contained in the observations a pragmatic 
approach for checking is proposed: 

 Graphical plot of signals; it may indicate outliers, sudden changes as function of expected time 
constants. 

 Statistical methods; average and variance of group of sensors; check of expected limits. 
 Pre-processing of data for the purpose of mathematical modeling is therefore important and should be 

carried out with caution. Reduction of observations and signals on the input side implies the 
examination of the uncertainty of the input data to the calculation model. More about this aspect can 
be found below and illustrated in the figures. 

 
Data analysis must consider at least the following steps: 
Pre-processing: Any pre-processing carried out must be reported. Participants in the analysis exercises were 
encouraged to report data overview based on plots, discussion about quality of data and their suitability to fit 
objectives, etc. 
Modelling approach: The methods and models used must be described. The hypotheses and approximation 
about the physics behind the considered candidate models must be justified. Schematic representations of heat 
flows in the building are recommended to support explanations. The process of model selection and the 
decisions made in this process must be explained. The software tools used to identify the parameters must be 
mentioned. 
Validation: The validity of the results must be demonstrated. Statistical criteria are very useful in this process. 
Results must not contradict physical consistency. The process followed to demonstrate the validity of the 
results must be explained. 
Results using different data must be compared. Since the data comes from the same physical system the best 
model should give similar results for two (or more) data series. 
Results: A value estimated for each parameter and its corresponding uncertainty must be clearly marked as 
the final result. A list of the hypotheses and approximation of the physics behind the model finally selected to 
give the final results, must be given together with the final result. 
Reporting: Reports must include at least a section devoted to error analysis 
Conclusions: Any relevant finding resulting from the analysis, about the results, about the experiment set up 
and measurement campaign, etc., must be summarised. 
 
Feedback among the different points should be made in every phase of the process. Is the model accepted? It 
is advisable to apply more than one method to get a better understanding of the whole problem. Common sense 
should always be used and all the available physical and statistical knowledge should be used whenever 
possible. A more detailed article “Guidelines for data analysis from dynamic experimental campaigns”, is 
available from www.dynastee.info  
 

2. MEASUREMENT DATA FROM THE PSA TEST BOX 
 
2.1. Experiment set up 
The high quality data series considered here were obtained from a test campaign carried out on a test box 
(simplified building) as it was constructed within the framework of IEA EBC Annex 58 and used for previous 
round robin activities in this context [8]. These experiments and data are considered a very useful benchmark 
for the development, application and validation of data analysis procedures for building dynamic modelling 
and energy performance assessment and also to support training initiatives. The main issues that make the test 
set up and data relevant in this context are: 
 The incorporation of features which are present in real-life buildings, bringing physical effects of 

increasing complexity to the analysis, but in a somewhat simplified framework, as the test box is relatively 
simple. 

 Tests with different conditions are useful to try and analyse the robustness of different analysis approaches, 
validate the results, and evaluate the impact of the different conditions on the accuracy of the results. 

 The availability of the geometrical details and the thermal properties of its materials, providing theoretical 
target values that are useful to support validation of the experimental results obtained from data analysis. 



 
Figure 8. Test box tested at PSA, Spain. 

 
2.1.1 Description of the test box 
The test box consists of a cubic structure that can be seen as a simplified building. Its exterior dimensions are 
120x120x120cm3. All the walls floor and ceiling are identical and 12cm thick. One of the walls has a window 
with a wooden frame. The size of this window is 71x71cm2, and its glazed area is 52x52cm2. The box is 
suspended over a structure that avoids the contact with the ground. Figure 8 shows a view of the test box and 
more detailed descriptions are included in [10, chapter 3 and 5]. 
Design values of the characteristic parameters of the box are summarised in Table 1. This table also includes 
estimates of the deviations of these parameters from constant values due to wind speed and surface 
temperature. The values were obtained as: 

 Target value: taking into account the properties of the materials provided by the 
manufacturers and the geometrical details of the construction. 

 Target value assuming some imperfections as a thin air layer, 2.0 mm thick, at the interface 
between each two layers. Slight differences have been calculated in U and HLC values 
caused by this issue. 

 Maximum deviation: as the standard deviation among all the average values for winter and 
summer data series due to variations of surface temperature and wind speed. Minor 
deviations have been estimated for all the relevant parameters (see Table 3 below). 

 
Table 3: Target values and their deviations from constant values due to wind speed 

and surface temperature. 
Parameter Target 

value 
Target value 

including 
imperfections 

Maximum deviation 

U opaque walls (W/m2K) 0.476 0.413 0.003 (0.7%) 
HLC whole box (W/K) 4.08 3.75 0.03 (0.7%) 
gA whole box (m2) 0.162 n/a 0.00002 (0.01%) 
g opaque walls (-) 0.0038 0.0033 0.0004 (7%) 

It is noted that the theoretical g-values estimated for the opaque walls are very small, therefore candidate 
models can be considered which neglect the solar gains through the opaque walls. Observation of the interior 
surface temperatures and heat fluxes are also relevant to discuss the suitability of such an assumption.  
 
2.1.2. Boundary conditions 
A test campaign was conducted starting on the 28th of May 2013 and ended on the 10th of January 2014. A 
selection of data recorded from the 06/12/2013 to the 07/01/2014 have been considered in this paper. The 
outdoor tests were carried out at CIEMAT’s Plataforma Solar de Almeria in Tabernas (Almería), in the south 
east of Spain (37.1°N, 2.4°W). The local climate is characterised by dry and very hot summers and cold 
winters, large temperature swings between day and night, strong global solar radiation on the south vertical 
surfaces in winter, strong global solar radiation on the horizontal surfaces in summer, and clear sky. The data 
files contain detailed measurements regarding these boundary conditions.  
 



2.1.3. Measurement devices 
The following outdoor climate measurements were recorded (Figures 9 and 10): air temperature, vertical global 
solar radiation (parallel and next to the glazing), wind speed and direction, horizontal global solar radiation, 
beam solar radiation, diffuse solar radiation, vertical long-wave radiation, relative humidity, horizontal long-
wave radiation from the sky, vertical global solar radiation facing north. 
The following variables were measured on the test box: indoor air temperature, heat-flux density and 
temperature on the interior surfaces of each wall (including floor and ceiling), exterior surface temperature of 
each wall (including floor and ceiling) and heating power. 
Device accuracy as well as its correct integration in the measured system has been carefully implemented in 
order to record reliable representation of each measured variable. Particularly, shielding of air temperature 
sensors (figure 9a, b and c), integration of surface temperature sensors and heat flux meters gluing them to the 
interior surfaces and protecting them with tapes of the same colour of the surface (figure 10a and b). A 
comprehensive description of the sensors and data-acquisition system is reported in [10]. 
 

   
Figure 9. Test set up in Almería. Temperature measurement devices: (a) Indoor air temperature, (b) detail 
of indoors shielding devices, (c) outdoor air temperature. 

 

    
Figure 10. Test set up in Almería. Other measurement devices: (a) heat flux and internal surface 
temperature, (b) external surface temperature, (c) beam, diffuse and global solar radiation, (d) wind 
speed and direction. 
 
2.2. Conducted experiments and data series 
Several experiments have been carried out under different test conditions to obtain different data series which 
are suitable to analyse different aspects of the modelling methods. The heating power is provided by a shielded 
100W incandescent lamp and the indoor air temperatures have been controlled in order to set the different test 
conditions in the different data series. The experiments have been designed with the aim of producing data 
series containing the information necessary to apply system identification techniques. These techniques require 
that the phenomena to be characterised are manifested and strong enough for the analysis process. Phenomena 
are strong enough in this context, when the amplitude of the corresponding driving variable is significantly 
higher than the uncertainty in its measurement. Otherwise signal-to-noise ratio is poor leading to inaccurate 
parameter estimates. Accordingly: 
 To identify the heat loss coefficient, the experiment set up must ensure strong enough heat loss through 

the building envelope. This is achieved maximising the temperature difference between the indoor and 
outdoor air, which is the driving variable in this case. This difference is limited according to the safety 
recommendations of the construction materials and their usual operational conditions. 

 To identify the overall gA-value, solar gains must be strong enough during the test. This is achieved when 
the experiment contains sunny days, with high solar radiation, which is the driving variable in this case. 

(a) (b) (c) 

(a) (b) (c) (d) 



 To identify dynamic models, the system must be excited by dynamic input signals in a wide range of 
frequencies covering the characteristic time constants of the system. This is achieved e.g. by applying a 
PRBS or ROLBS power sequence. See ref. [11] for further information regarding the ROLBS sequence. 

 
The following issues have also been considered relevant regarding the experiment set up: 
 Heating Power: heating in the indoor air during the experiment is necessary to maximise temperature 

differences between indoor and outdoor air. Free running tests may lead to poor signal to noise ratios in 
the temperature difference measurements and problems with identifiability. Also, the heating power is a 
relevant variable to the energy balance equation used in the analysis, so it must be strong enough during 
the test.  

 Homogeneity of the indoor air temperature: the different sources of heat such as heating devices and solar 
radiation can lead to some inhomogeneity of the indoor air temperature contributing to the uncertainty 
budget of the parameter estimates. A mini fan has been used to avoid stratification. A small device with 
very small ventilation power has been used to avoid perturbations in the interior convection coefficients. 

 Sampling frequency: the sampling theorem must be fulfilled. The sampling frequency must be at least 
twice the frequency of the variable which is being measured.  

According to all these issues three PSA data series corresponding to different periods have been created. Each 
of the data series has 46 signals. A one-minute sampling interval has been set. This sampling interval 
guarantees that the raw data are fulfilling the sampling theorem. Note that any resampling applied in the pre-
processing phase must also fit this theorem. The three periods have different characteristics concerning to the 
auxiliary heating and indoor temperature setting: 
 Dataset 16: 06/12/2013 to 17/12/2013 (12 days). One ROLBS power sequence. This sequence was mainly 

designed to optimise the test conditions regarding the application of the system identifications techniques. 
 Dataset 17: 18/12/2013 to 26/12/2013 (9 days). Aiming to replicate a co-heating test, but setting the indoor 

air temperature set point to 35°C with a dead band of 0.5°C. This test sequence was designed in order to 
have a reference analysis corresponding as much as possible to the traditional co-heating test, also to 
explore the application of steady-estate approaches and to analyse the capability of applying the system 
identification techniques to this type of test. Regarding these techniques, this series is also interesting to 
analyse causality issues and different variables as input signal. It must be observed that this test isn`t 
identical to the co-heating test as described in literature [12]. It is modified taking into account the given 
boundary conditions: in winter the sun position is low, so that strong global solar radiation is incident on 
the window (Figure 9a) and therefore indoor air temperatures cannot be maintained constant at 25°C. Even 
when the set point is raised to 35°C, the indoor air temperature shows some dynamic behaviour with 
overheating intervals (Figure 9b, centre). This problem isn’t seen in summer, but then the outdoor 
temperature would very high, and consequently a key requisite to be able to identify the HLC from an 
outdoor test is to have an indoor air temperature significantly above 25°C. Otherwise, the heat flux through 
the building envelope is too weak, compromising the accuracy of the estimated value. 

 Dataset 18: 27/12/2013 to 7/01/2014 (12 days): Also aiming to replicate a co-heating test, but in this case 
setting the indoor air temperature set point to 21°C, which could be in the comfort zone in an in-use 
building. The dead band in this test was set to 0.8°C. These more realistic conditions are set in order to 
explore the possibilities to apply these identification techniques to in-use buildings using data recorded by 
on-board monitoring systems. This series is also interesting to analyse causality issues and different 
variables as input signal. In this case, the difference between indoor and outdoor air temperature is small 
which increases the difficulty of identifying the HLC. Additionally, the contribution of the solar radiation 
to the space heating makes it impossible to maintain a constant indoor air temperature (Figure 11b, right) 
stressing the need to apply techniques for dynamic analysis. 

 
2.3. Data overview 
A preliminary observation of the graphical presented measurements gives key information to construct 
candidate models. Figure 11 includes some selected graphs that have been considered relevant after such 
preliminary observation of all the recorded data. Equivalent graphs of the three data series are included for 
being considered useful to illustrate the building response under the different test and boundary conditions. 
Some of the issues that could be addressed using these plots are discussed below. As a first analysis step the 
individual walls can be studied taking into consideration the impact of solar radiation. In fact six different 
conditions can be noted at the same moment of measurement whereas the composition of the walls (apart from 
the window) is the same. The impact of the solar radiation on the indoor energy balance, hitting the opaque 



walls can be discussed from these plots. The levels of solar radiation are high and differ according to the 
orientation (Figure 11a), generating different temperatures on the exterior surfaces of the walls. However, the 
interior surface temperatures of the ceiling and back wall are similar (Figure 11d) which is an indication of the 
negligible effect on the heat flux through the opaque walls due to the solar radiation incident on the external 
surfaces. This makes sense considering the low g-value theoretically calculated as the value reference for the 
opaque walls. However, the interior surface temperature of the floor and right and left walls, presents some 
peaks (Figure 11d) attributed to the solar radiation transmitted through the window and incident on the interior 
surfaces. 

 

(a) Vertical (Gv) and horizontal (Gh) solar radiation 

(b) Indoor (Ti_down, Ti_up) and outdoor (Te_middle, Te_down) air temperature 

(c) Heating power 

(d) Interior surface temperatures 
 
Figure 11. Data overview: Dataset 16 from 6 to 17/12/2013 (left), Dataset 17 from 18 to 26/12/2013 (centre), 
and Dataset 18 from the 27/12/2013 to the 07/01/2014 (right). 
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3. APPLICATION OF LORD TO PSA DATA SERIES 
 

LORD is user friendly software which enables a transient mathematical model of a component or building to 
be constructed. The parameters of the model (e.g. resistances, capacitances and heat flow admittances) 
essentially define the dynamic and steady-state thermal and solar properties of the system. Using LORD, the 
user describes the component or building as a series of nodes with a network of conductances and capacitances 
and measured input values of the indoor and outdoor temperature, the heating power, heat flux, the solar 
radiation, etc. The full dynamic information in the data is retained. Using the OEM, the output of the actual 
test (for instance, the room temperature as a function of time) is compared with the output which the model 
produces for the same input conditions. LORD also has a PEM facility.  

Figure 12 shows a typical 4-node model which would be used to analyze heat flux measurements through a 
component such as the envelope of the PSA test box. Figure 13 shows a 5-node model used to estimate the 
Heat Loss Coefficient (HLC) and Solar Aperture (gA) of the PSA test box from the internal and external 
temperatures (Tint and Text), the heating power (Ph) and the solar radiation in the vertical plane (Gv). For 
estimation of the gA, two admittances (A2 and A4) are used to describe the solar radiation partly absorbed by 
the exterior of the test box and partly transmitted through the window, represented by conductance H2-4, and 
absorbed within the interior test room. A variant of this model has been used previously for co-heating tests 
[13]. 

 
Figure 12. 4-node model of a component with measured external and internal temperatures and heat flux. 

 
Figure 13. 5-node model of PSA test box. 

 

Focusing on the whole test box HLC and gA, it is useful to use a steady state method, Siviour Analysis [14], 
to make a first estimate of HLC & gA. The steady state heat balance is described by Equation 5: 

𝑃ℎ = 𝐻𝐿𝐶 × ∆𝑇 −𝑔𝐴 × 𝐺𝑣       eq. 5 

Dividing by T gives: 

 
௉௛

்
= 𝐻𝐿𝐶 − 𝑔𝐴 ×

ீ௩

்
          eq. 6 

    

By calculating daily average values of the main parameters, the data can be represented graphically [ref 13, 
14] in an X-Y plot with Gv/T on the X-axis and Ph/T on the Y-axis. HLC and gA can then be estimated by 
linear regression, where the intercept on the Y-axis is HLC and the slope is gA.  The analysis was applied to 
each of the three data series (Figure 14). Series 17 gives the best fit: HLC = 4.06 ± 0.10 W/K and gA= 0.15 ± 
0.02 m2. Series 17 is the best ‘steady state’ data series with high T and also variation in Gv data over the 
period. 



 

Figure 14. Siviour analysis applied to Datasets 16, 17 and 18. 
 

The LORD analysis was carried out with 10-minute average data which retains most of the dynamic data, 
particularly in Series 16 with the ROLBS sequence, whilst reducing the size of the data set. The 5-node model 
(Figure 13) was used using the internal temperature, Ti, as the output variable. OEM was used for each of the 
data series 16-18 and all data; an additional analysis was performed on series 16 with PEM. The results, 
including the Confidence Interval (CI) are given in Table 4.  

Table 4 indicates that similar results are obtained from the three individual series and all data for gA, however 
there is more variation in HLC. There is higher uncertainty for the series 17 results. Comparing OEM and PEM 
with series 16 data shows that PEM gives a better fit to all data, particularly series 17 (Figure 15). 

 
Figure 15. Comparing OEM and PEM: applying the results of Dataset 16 to Dataset 17 using 
the 5-node model. 

 

 



 

Table 4. LORD results for PSA test box HLC and gA values using the 5-node model. 

 HLC W/K HLC: CI 
of the estimation 

method W/K 

gA m2 gA: CI 
of the estimation 

method m2 
Series 16 4.16 0.02 0.15 0.00 
Series 16 PEM 4.09 0.03 0.15 0.00 
Series 17 4.18 0.16 0.17 0.04 
Series 18 4.30 0.03 0.17 0.00 
All data 4.15 0.00 0.17 0.00 

 

A simplified model with four nodes without a parallel conductance representing a window was also tried. PEM 
was also used to analyse the series 16 data. The results are shown in Table 5. 

 

Table 5. LORD results for PSA test box HLC and gA values using a 4-node model. 

 HLC W/K HLC: CI  
of the estimation  
method W/K 

gA m2 gA: CI  
of the estimation  
method m2 

Series 16 4.15 0.00 0.15 0.00 
Series 16 
PEM 

4.06 0.00 0.15 0.00 

 

Table 5 shows that the simple 4-node model produces similar results to the 5-node model (Figure 13). Using 
PEM also produces a better fit to all data, particularly series 17 (Figure 16). 

 
Figure 16. Comparing OEM and PEM: applying the results of Dataset 16 to Dataset 17 using the 5-
node model. 

 

3.1 Conclusions of the LORD analysis 
Series 17 gave good results using Siviour analysis but was less satisfactory using LORD. Series 16 with 
ROLBS is better than the ‘steady state’ series 17 for identification of HLC and gA using a dynamic analysis. 
The more dynamic Series 16 produced satisfactory results, particularly using PEM which gave a good fit to 
series 17 & 18 data. This validates both the 5-node and simplified 4-node models for series 16 models. PEM 
gives more random residuals but takes significantly longer to run a calculation than OEM. LORD has the 



advantage that models can be quickly produced using the user-friendly interface and results can be quickly 
obtained using OEM. This enables students to gain confidence using identification techniques. 

4. APPLICATION OF CTSM-R TO PSA DATA SERIES  
 

This section describes the application of the grey-box modelling method CTSM-R [1] to obtain the Heat Loss 
Coefficient (HLC) results for the provided data. This method has been applied with the objective of comparing 
of the results with those previously obtained using LORD. Both methods should be able to provide similar 
results since they are applied for the same datasets. The similarity between the results will demonstrate the 
robustness of the methods.  

In order to carry out the robustness analysis of the mentioned methods two different datasets will be considered: 
dataset 16 and dataset 17. However, to estimate the HLC of the test box, only selected signals such as the 
external temperature, internal temperature, heating power and the solar radiation have been used. The one 
minute data was converted into hourly averages due to some difficulties found when working with not relevant, 
minutely information.  

Before testing the dataset with the proposed method, a simple visual input data analysis has been developed 
plotting the input data. Since in dataset 16, the heater was switched off during several days, it can be assumed 
that the grey-box model will have difficulties when trying to estimate the HLC due to its irregular behaviour 
compared with the rest of the input variables. Despite that, the analysis has been developed for the whole 
dataset 16. As expected from the visual check of the data, the analysis has to be limited to a shorter period in 
order to obtain better results, since some of the models were not able to converge and others were providing 
very unsuitable residuals. See also [16] for selecting suitable models. However, due to the limited period of 
time where the heater was working, it was not possible to limit the rest of the parameters. Unlike dataset 16, 
dataset 17 provides a wide range of records where the heater was switching ON/OFF resulting in more dynamic 
behaviour of the measurements. However, when analyzing the whole dataset 17 with CTSM-R, the obtained 
results were not accurate enough. Therefore, a shorter period is also selected in this dataset, where apart from 
the heater also the solar radiation effect is considered when selecting it as an input signal. For this selection, 
the period when less solar radiation was observed has been considered.  

This method works for the case where each model includes the internal parameterization of the model. In other 
words, the models need to have some initial physical knowledge in order to make proper estimations. Thus, 
during the grey-box model analysis, the simplest one will be the first model to be studied and the models will 
increasingly become more complex. A set from the simplest to the most complex model will be fitted and the 
results will be described. All of the used models are plotted in Annex A for which the most complex is given  
in figure 16: 

 

Figure 17. The most complex tested model is TiTmTeTh. 

The shown model (Figure 17) contains seven parts that are combined in order to estimate the rest of the models, 
as shown in Annex A (models a, b, c, d, e, f, g, h) and the obtained results are shown in Table 6. The parts 
considered are the interior, the medium, the heater, the solar radiation, the envelope and the ambient. As seen, 
this model includes four state variables that represent the temperature in each part of the building; the interior 
temperature (Ti), the medium temperature (Tm), the heater temperature (Th) and the building exterior 
temperature (Te). 

 
4.1 Validation and results for dataset 16: 



The analysis has been performed between the 9th and the 13th of December 2013 (4 days), since it is the only 
period in the whole dataset 16 where the heater is switched ON. All the used input data is plotted in figure 18. 

 

Figure 18. Input data for dataset 16 

The selected period has been tested from the simplest model (Ti) until the most complex model (TiTmTeTh) 
where the internal (Ti), medium (Tm), external (Te) and heater (Th) temperatures have been used as state 
variables. The first step that needs to be followed when applying any modelling approach is common sense 
and physical criteria. In a first overview of the results model TiTeTh can be disregarded considering the large 
value of the error estimated for the HLC and the result obtained for the solar aperture that is significantly larger 
than the window area which is physically impossible. Large disagreement regarding the results obtained from 
other data series or other approaches which cannot be justified from the physical point of view, are also relevant 
criteria to disregard results from some models. Afterwards the validity of the grey-box model obtained using 
CTSM-R, is analysed from the statistical point of view through the Likelihood Ratio Test. 

Applying this test, it will be possible to compare the different models and select the ones that best fit the data. 
In order to carry out the test, the data is analysed with each of the models, where each of them will provide a 
Log-likelihood value.   

 

Table 6 . Results for the period in dataset 16 

 HLC [W/K] 
Error [W/K] 

(HTC 95% Confidence 
Interval of the 

estimation method) 

Aperture 
(A2) [m2] 

Error 
[m2] 

Log-
likelihood 

P value 

Ti 3.80 ±0.48 0.110 ±0.040 -71.0  

TiTe 4.10 ±0.11 0.150 ±0.010 -1.5 0 (Ti ->TiTe) 

TiTeRia 4.10 ±0.11 0.150 ±0.010 -1.5 0 (Ti ->TiTeRia) 

TiTh - - - - - - (Ti ->Th) 

TiTm 4.20 ±0.15 0.160 ±0.020 -9.2 0 (Ti ->Tm) 

TiTmTh - - - - - - (TiTm ->TiTmTh) 

TiTeTh 13.70 ±27.90 3.400 ±1.000 -48.9 1 (TiTe ->TiTeTh) 

TiTmTe - - - - - - (TiTe ->TiTeTh) 

TiTmTeTh - - - - - 
- (TiTeTh -

>TiTmTeTh) 
 

From this test, the p-value shown in the last column of Table 6 is obtained. These p-values show the relation 
between the different models. The lower this p-value is, the better the quality of the model will be for the 
corresponding data. From these p-values can be concluded that the most suitable model is TiTe. There are also 
two other models which show 0 as p-value. However, they are showing an extra parameter in the model 
(TiTeRia) or a lower Log-likelihood result (TiTm), with no extra improvement in the p-value.  



Moreover, the residuals are satisfactory for the model TiTe and the obtained HLC result is equal to the value 
obtained with LORD, 4.1 W/K. The same happens with the solar aperture value, where 0.15m2 is obtained. 
Moreover, the residuals for the best model (TiTe) are shown in Figure B.1 (Annex B). 

 

4.2 Validation and results for dataset 17: 
The same procedure is followed when analyzing dataset 17. In this case, the selected period is between the 19th 
and the 22nd of December 2013, three from the available 9 days, since none of the models was able to provide 
good results for the whole dataset. This proves that a decision making phase based on statistical information 
and common sense is required. Although the physical system has not changed, the data may contain too much 
or too less information for the chosen model. 

 

Figure 19. Input data for dataset 17 

All the models are tested again for the reduced new dataset. From this test the Log-likelihood values are 
obtained, which will be indispensable for the Likelihood Ratio Test development. Unlike in dataset 16, there 
are no doubts selecting the most suitable period for the data. In this case, the lower p-value is also obtained 
with the model TiTe, resulting in the obtained value for the HLC, 4.2W/K, very similar to the obtained in 
dataset 16, 4.1W/K. However, if the aperture results are checked the results are exactly the same for both 
datasets, 0.15m2. The results obtained are shown in Table 7: 

 

Table 7. Results for the period in dataset 17 

 
HLCcorrected 

[W/K] 

Error [W/K] 
(HTC 95% Confidence 

Interval of the 
estimation method) 

Aperture 
(A2) [m2] 

Error 
[m2] 

Log-
likelihood 

P-value 

Ti 4.2 ±0.1 0.13 ±0.03 82.7  

TiTe 4.2 ±0.09 0.15 ±0.03 101.9 9.7* 10-8 (Ti ->TiTe) 

TiTeRia 4.2 ±0.07 0.14 ±0.03 93.1 2.1* 10-5 (Ti ->TiTeRia) 

TiTh - - - - -  - (Ti ->Th) 

TiTm 4.3 ±0.12 0.16 ±0.04 93.4 2.8* 10-4 (Ti ->Tm)  

TiTmTh 11.9 ±16.9 3.9 ±8.4 -76.3 1 (TiTm ->TiTmTh) 

TiTeTh -0.0008 ±0.03 0.002 ±0.08 76.5 1 (TiTe ->TiTeTh) 

TiTeThRia - - - - - - (TiTe ->TiTeThRia) 

TiTmTe 0.035 ±0.19 4 ±44 -100.8 1 (TiTe ->TiTeTh) 

TiTmTeTh - - - - - - (TiTeTh ->TiTmTeTh) 

 

 

5. FINAL CONCLUSIONS 
 
During a number of research projects over the last 20 years, the need for advanced training for thermal 
performance assessment of the building envelope, based on two disciplines, e.g. building physical as well 



as statistical knowledge, has been identified. The importance of bench mark data for training to study 
relevant phenomena in real size buildings, is useful to develop skills in decision making regarding selection 
of variables and test periods suitable for analysis and modelling. Therefore, two different methods have 
been presented and applied to several data series from outdoor experiments. For each method different 
mathematical models have been used and results have been compared. The grey-box models applied in 
CTSM-R can be considered as robust. This statement has been demonstrated in the previously explained 
development where due to the analysis of the test box data, good results have been obtained. The same 
data has been applied using several methods in order to obtain the HLC and the solar aperture, gA of the 
test box. It has been demonstrated that LORD has been able to provide similar results. Moreover, the same 
happens between the two values obtained in the two different datasets recorded under completely different 
test conditions.  For the HLC, the obtained value in LORD was 4.1W/K for dataset 16 and 4.2W/K for 
dataset 17, while the two results obtained using CTSM-R were 4.1W/K and 4.2W/K, leading to the 
conclusion that  the obtained results are the same for both methods.  
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ANNEX A 

All models with increased complexity (a to i) applied within the CTSM-R method 

  
     (a)                                                                   (b) 

  
(c)                                                                      (d)        

   
(e)                                                                        (f)        

  
(g)                                                                        (h)     

 
(i) 

Figure A.1- All the tested models are (a) Ti, (b) TiTe, (c) TiTeRia, (d) TiTh, (e) TiTm, (f) TiTmTh, (g) 
TiTeTh, (h) TiTmTe and (i) TiTmTeTh. 



The last model (i) contains seven parts that are combined in order to estimate the rest of the models, as shown 
in the rest of the models (a, b, c, d, e, f, g, h). The parts are the interior, the medium, the heater, the solar 
radiation, the envelope and the ambient. As seen, this model includes four state variables that represent the 
temperature in each part of the building; the interior temperature (Ti), the medium temperature (Tm), the heater 
temperature (Th) and the building envelope temperature (Te). 

 

ANNEX B 

The residuals of the best models are plotted in this section. Both of the datasets 16 and 17 were fitting 
suitably with model TiTe. 

 
(a)      (b) 

 
(c) 

Figure B.1- Residuals of dataset 16: (a) Autocorrelation function, (b) periodogram and general residuals. 

 
(a)      (b) 

 
 
 



 
(c) 

Figure B.2- Residuals of dataset 17: (a) Autocorrelation function, (b) periodogram and general residuals. 

 

The residuals obtained for both periods are quite good as shown in Figure B.1 and B.2. In case of dataset 16, the 
autocorrelation function (see Figure A.1-(a)) is not completely white noise but it is close to it. However, the 
autocorrelation function of the dataset 17 (see Figure A.2-(a)) can be assumed to be white noise. Moreover, the 
periodogram is describing suitably the dynamics of the models in both periods (see Figure B.1-(b) and Figure 
B.2-(b)). 

 

 


