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Energy use estimations starting from measurements

Calculation models

Measurement models
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Energy use estimations starting from measurements
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For characterising the energy use in function of weather
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Energy Signature models can be used to

for different periods or houses
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4 Yearly, monthly, weekly...

Daily
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Applications: normalisation, prediction...

Energy Feedback, Energy Auditing, Commissioning

e.g. assessment of energy-efficiency measures (e.g. by comparison) 10



The data consists of residential energy use data

Buildings:
— 25 single-family dwellings in Flanders
— mostly > 10 years old
— Gas used for space heating only

Measurements:
— Smart meters: hourly gas use
— Local Weather station: weather data
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(WEEKLY) DAILY DATA
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Qt =cq1 + cpXTer + c3XRgt + c4 XWst + cgXTer_q

Exogenous inputs (weather inputs)
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DAILY DATA
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Qt =cq1 + cpXTer + c3XRgt + c4 XWst + cgXTer_q

Exogenous inputs (weather inputs)

+Ce X Qi1 +C7 X Qi_p + -+ €12 X Q7

Auto-regressive terms
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DAILY DATA
- Classical Linear regression models (LM)
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energy use time patterns can be visually recognised
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When observing 2-hourly energy use time series
energy use time patterns can be visually recognised

How can these patterns also be mathematically recognised,

and similar patterns be grouped?

Clustering of energy use time patterns using CLUSTER
nunlvelg
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When observing 2-hourly energy use time series
energy use time patterns can be visually recognised

Exterior Temperature

How can groups of similar patterns be characterised

in function of weather conditions or calendar information?
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Classification of energy use time
patterns
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DAILY DATA
- Classical Linear regression models (LM)
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LMC- and ARKG-models with cluster variable

Qt =cq1 + cpXTer + c3XRgt + c4 XWst + cgXTer_q

Exogenous inputs (weather inputs)

+Ce X Qi1 +¢7 X Qiy + -+ €12 X Q7

Auto-regressive terms

+C13—>(n+13) X C1—>n
Cluster variable as constant

+(C13—>(n+13) X Cion X Teg + ( ))+ €t
Cluster variable in interaction with other variables
— The cluster variable describes to which cluster each day belongs
— The Energy Signature may vary per cluster or ‘state’ of the system
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The LMC- and ARKC models are statistically valid
and fit the data better than LM- and ARK-models

invalid in about half of the cases, issue: autocorrelated

errors

m valid for most cases, minor issue: non-constant variance
b

A\=ddes part of autocorrelations resolved by cluster variable
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Linear regression models: data — model selection?

v
o

Sub-Daily { - Use LM or ARX, with cluster variable: LMC, ARXC

Note:
— Beware of aggregating daily values into 2, 3... 6 day values
— Study on houses with average or high energy use
— applicability on low-energy dwellings to be evaluated!

23



ldentify changes in energy use over time:

comparison of Energy Signatures

— Energy Signature Coefficients — classical parameters

— A ssignificant difference in
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ldentify changes in energy use over time:
comparison of patterns

— Energy Use Time Patterns — additional insights in energy use related behaviour of
building
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Characterisation of energy use time patterns

— Energy use time patterns allow to recognise energy use profiles in the data,
identify:
— ‘states’ of the building (where no other building info or measurements are
available)
— system settings,
— occupational characteristics,
— properties of hot water vs. space heating energy use
— Changes in energy related behaviour of the building over time
— Possible Applications:
— Energy Audit
— Commissioning
— Research: e.g. Building Stock Analysis, Occupant behaviour...
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1. Findings & Views

Energy performance assessment of buildings using measurements
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What do we want to identify?
(<> what is being measured?)



The building ‘system’: an interaction

Building structure /
envelope

Construction quality?
Actual heat transfer
coefficient?
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Services efficiency?
Different energy

use functions?
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IS Influenced by external conditions, and changes through
time
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What do we want to identify? (example)

Energy use of occupied
building
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Energy Signature coefficients
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Energy Signature coefficients — building physical values

— Energy Signature Coefficients are related to HTC, but it is not (yet) proven
— how close they are to calculated / physical values
— How they are influenced by building services characteristics (e.g. efficiencies...)
— How they are influenced by occupational characteristics (e.g. opening of
windows...)
— To be further investigated...
— Use of additional measurements (e.qg. indoor climate)

— e.g. Annex /1 - ST3

33



What is the obtained/needed accuracy?



93% Gonfidence Intervals for exterior temperature coefficient
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How long and when to measure?
(model valid for entire year)
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The period can be reduced to 3 or 2 . Highest accuracy
Jeo Max. Solar Radiation
months T &
: : 3 oA
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Energy performance assessment of buildings using measurements
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Jouw energisgebruik vou het voorbije jaar
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