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Smart meter energy use data

Energy Signatures
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I. Research Overview
Characterisation of residential energy use for heating using smart meter data

II. Findings and Views
Energy performance assessment of buildings using measurements
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I. Research Overview
Characterisation of residential energy use for heating using smart meter data
(Ghent University, 2017)
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Energy use estimations starting from measurements

Calculation models
Measurement models

MODELLING forward, white-box Backward, black- and grey-box

INPUT
Information of building and user, 

assumptions

Measurements of energy use, weather, 

energy-related parameters…

EXAMPLE
epb-calculations, 

dynamic simulation models
Energy Signature models
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→ Measured energy use is also

influenced by external conditions

→ It needs to be CHARACTERISED: 

mathematically described

in function of external variables

→ Allowing energy use
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Energy use estimations starting from measurements
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Energy Signature models are a classical approach
For characterising the energy use in function of weather 
variables

Energy = c1 + c2 × HDD + εt

HDD = Heating Degree Days = 16,5°C – Te,eq

Energy

HDD

Energie 
Energy

Exterior

Temperature

Time
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Energy Signature models can be used to

Compare the energy use

for different periods or houses

To predict or normalise

the energy use
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From manual meter readings to smart meter data

Energie 

Time

Hourly

Daily
Yearly, monthly, weekly…



Applications: normalisation, prediction… 

in

Energy Feedback, Energy Auditing, Commissioning

e.g. assessment of energy-efficiency measures (e.g. by comparison) 10

EnergyEnergyEnergyEnergy Use DataUse DataUse DataUse Data Model?Model?Model?Model?
Energy Energy Energy Energy 

SignaturesSignaturesSignaturesSignatures

Linear Regression

Static & Dynamic

Do (sub-)daily data allow to improve Energy Signature 
models?

Energy = c1 + c2 × HDD + εt
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The data consists of residential energy use data

Buildings:

̶ 25 single-family dwellings in Flanders

̶ mostly > 10 years old 

̶ Gas used for space heating only

Measurements:

̶ Smart meters: hourly gas use

̶ Local Weather station: weather data
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1 • Classical Linear regression models (LM) 

2 • Auto-Regressive models (ARX) 

3
• Clustering Energy Use Time 
Patterns

4
• Classifying Energy Use Time 
Patterns

5 • LM- & ARX-models with EUTP

(WEEKLY) DAILY DATA

2-HOURLY DATA
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Qt	=	c1	+	c2×Tet	+	c3×Rgt	+	c4×Wst	+	c5×Tet−1
	

+c� × ���� + c� × ���� +⋯+ c�� × ����

+c��→("#��$ × %�→"

+(c��→("#��$ × %�→" × &'� + … $+	εt

Auto-regressive terms

Exogenous inputs (weather inputs)

Cluster variable as constant

Cluster variable in interaction with other variables

Classical linear regression base model
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1 • Classical Linear regression models (LM) 

2 • Auto-Regressive models (ARX) 

3
• Clustering Energy Use Time 
Patterns

4
• Classifying Energy Use Time 
Patterns

5 • LM- & ARX-models with EUTP

DAILY DATA

2-HOURLY DATA
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Qt	=	c1	+	c2×Tet	+	c3×Rgt	+	c4×Wst	+	c5×Tet−1
	

+c� × ���� + c� × ���� +⋯+ c�� × ����

+c��→("#��$ × %�→"

+(c��→("#��$ × %�→" × &'� + … $+	εt

Auto-regressive terms

Exogenous inputs (weather inputs)

Cluster variable as constant

Cluster variable in interaction with other variables

Auto-regressive model with exogenous inputs (ARX)
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1 • Classical Linear regression models (LM) 

2 • Auto-Regressive models (ARX) 

3
• Clustering Energy Use Time 
Patterns

4
• Classifying Energy Use Time 
Patterns

5 • LM- & ARX-models with EUTP

DAILY DATA

2-HOURLY DATA
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When observing 2-hourly energy use time series (one winter 
month)
energy use time patterns can be visually recognised

House 18

House 17

NIGHT SET-BACK

START-UP PEAK

WEEKEND DAY 

PATTERN

WEEK DAY 

PATTERN

→ System characteristic

→ User characteristic
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How can these patterns also be mathematically recognised, 

and similar patterns be grouped?

When observing 2-hourly energy use time series
energy use time patterns can be visually recognised

Clustering of energy use time patterns using CLUSTER 

ANALYSIS
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How can groups of similar patterns be characterised 

in function of weather conditions or calendar information?

When observing 2-hourly energy use time series
energy use time patterns can be visually recognised

Classification of energy use time 

patterns
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1 • Classical Linear regression models (LM) 

2 • Auto-Regressive models (ARX) 

3
• Clustering Energy Use Time 
Patterns

4
• Classifying Energy Use Time 
Patterns

5 • LM- & ARX-models with EUTP

DAILY DATA

2-HOURLY DATA
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LMC- and ARXC-models with cluster variable

̶ The cluster variable describes to which cluster each day belongs

̶ The Energy Signature may vary per cluster or ‘state’ of the system

Qt	=	c1	+	c2×Tet	+	c3×Rgt	+	c4×Wst	+	c5×Tet−1
	

+c� × ���� + c� × ���� +⋯+ c�� × ����

+c��→("#��$ × %�→"

+(c��→("#��$ × %�→" × &'� + … $+	εt

Auto-regressive terms

Exogenous inputs (weather inputs)

Cluster variable as constant

Cluster variable in interaction with other variables
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invalid in about half of the cases, issue: autocorrelated 

errors

valid for most cases, minor issue: non-constant variance

part of autocorrelations resolved by cluster variable

valid for most cases, minor issue: non-constant variance

LM

ARX

LMC 

ARXC

The LMC- and ARXC models are statistically valid
and fit the data better than LM- and ARX-models
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LM ARX LMCI ARXCI LMCIS ARXCIS

Average Goodness-of-fit (R²adj)
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Weekly • Use LM

Daily • Use ARX (LM) 

Sub-Daily • Use LM or ARX, with cluster variable: LMC, ARXC

Linear regression models: data ↔ model selection?

Note:

̶ Beware of aggregating daily values into 2, 3… 6 day values

̶ Study on houses with average or high energy use 

→ applicability on low-energy dwellings to be evaluated!



̶ Energy Signature Coefficients → classical parameters

̶ A significant difference in energy use is detected

24

Identify changes in energy use over time: 
comparison of Energy Signatures



̶ Energy Use Time Patterns → additional insights in energy use related behaviour of 

building

̶ The difference is also found in the patterns (Saturday and Sunday)

25

Identify changes in energy use over time: 
comparison of patterns

Period 1 Period 2
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Characterisation of energy use time patterns
̶ Energy use time patterns allow to recognise energy use profiles in the data, 

identify: 

‒ ‘states’ of the building (where no other building info or measurements are 

available)

‒ system settings, 

‒ occupational characteristics, 

‒ properties of hot water vs. space heating energy use

‒ Changes in energy related behaviour of the building over time

̶ Possible Applications:

‒ Energy Audit

‒ Commissioning

‒ Research: e.g. Building Stock Analysis, Occupant behaviour…
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II. Findings & Views
Energy performance assessment of buildings using measurements 
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What do we want to identify?
(↔ what is being measured?)



The building ‘system’: an interaction
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Building structure / 

envelope

OccupantsBuilding services

Services efficiency? 

Different energy 
use functions?

Behavioural savings? 

Energy use given the
occupants

interactions? 

Construction quality? 

Actual heat transfer 
coefficient? 



Design

As-built

Initial 
useUse

Occupants 
change

Renovation
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The heat use of the building ‘system’
is influenced by external conditions, and changes through 
time



What do we want to identify? (example)
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Energy use of occupied

building

e.g. energy use feedback

Building heat transfer 

coefficient

e.g. construction quality



Energy Signature coefficients
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Energy use of occupied

building

e.g. energy use feedback

Building heat transfer 

coefficient

e.g. construction quality

HTC?
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Energy Signature coefficients ↔ building physical values 

̶ Energy Signature Coefficients are related to HTC, but it is not (yet) proven 

̶ how close they are to calculated / physical values

̶ How they are influenced by building services characteristics (e.g. efficiencies…)

̶ How they are influenced by occupational characteristics (e.g. opening of 

windows…)

̶ To be further investigated...

̶ Use of additional measurements (e.g. indoor climate)

̶ ...

̶ e.g. Annex 71 – ST3

HTC?
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What is the obtained/needed accuracy?



35

-14

-12

-10

-8

-6

-4

-2

0
1° 2*° 3 4*° 5 6° 7° 8*° 9° 10 11 12 13 14° 15*° 16* 17*° 18*° 19*° 20*° 21*° 22*° 23*° 24 25*°

Temperature Coefficient (kWh/°C)

95% Confidence Intervals for exterior temperature coefficient



36

LM-model

LMCIS-model (with clustering)Observed – fitted (95% PI)

Observed – fitted (95% PI) R²adj=0,77 

R²adj=0,93 

95% Prediction Intervals
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How long and when to measure?
(model valid for entire year) 
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How long does the measurement period need to be? 

0 10 20 30 40

Heatingseason

Oct-Nov-Dec

Nov-Dec-Jan
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Jan-Feb-Mar
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Heatingseason 2011-2012

MAE (kWh/day)

Approach:

̶ From full heating season to 3, 2, 1 

month

̶ Compare prediction accuracy 

̶ Characteristics of the ‘good’ periods?
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How long does the measurement period need to be? 

The period can be reduced to 3 or 2 

months

(during the heating season) 

with negligible loss in accuracy, 

if the variation in weather variables 

(e.g. temperature and solar radiation) 

is sufficiently high!
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CONCLUSIONS
Energy performance assessment of buildings using measurements 
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