

Measuring the in-situ performance of dwellings

Dr Richard Fitton

Applied Buildings and Energy Research Group

Introduction

Who am I?

- Building Physicist
- Lecturer in Energy Efficiency
- Head of Applied Buildings and Energy Research Group

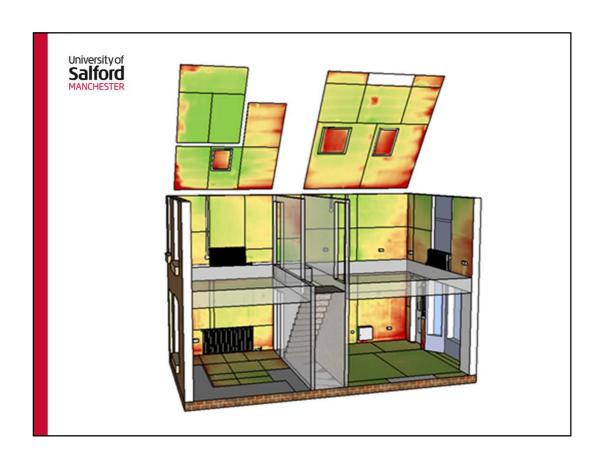
•

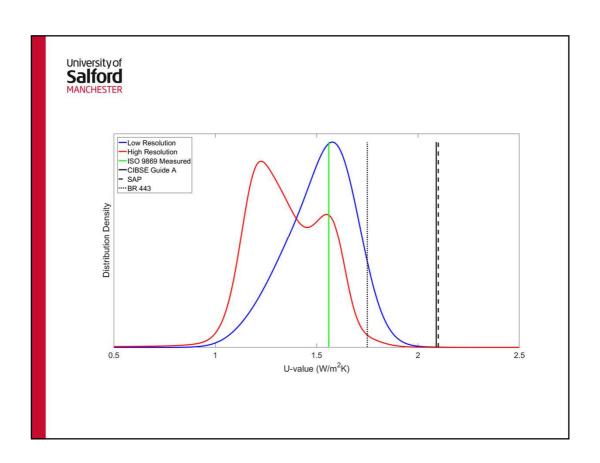
Energy House

Performance Gap

Performance gap is now well researched:

Measured energy - Modelled energy = Performance gap.




Modelled Data Example

Variations in U values

- 'Variations in U value of a whole dwelling using infrared thermography'
- Published in Buildings 2018, 8, 46; doi:10.3390/buildings8030046

Modelling Results

A heat transfer coefficient was determined under steady state modelled conditions.

	Model using point measurements	Model using Low-resolution IRT	Model using High-resolution IRT
HTC (W/K)	225 ± 6	233 ± 23	209 ± 26
Difference from Measured HTC	2.5%	6.1%	-4.8%

Measured HTC = 220 W/K

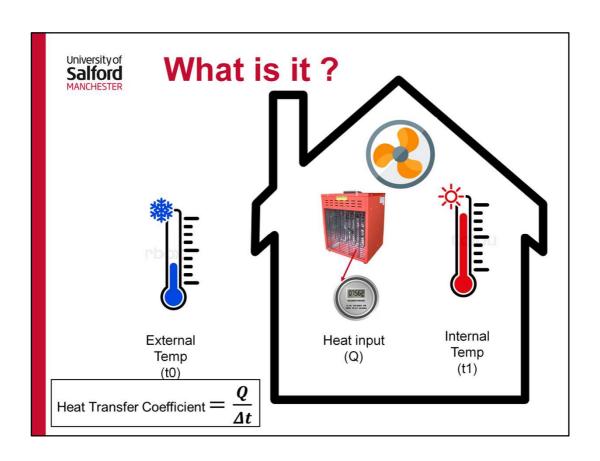
Modelling Results

Dynamic simulations made predictions of the annual heating consumption and heating cost.

	Model using point measurements		Model using High-resolution IRT
Heating (Gas) Consumption	5547 ± 83 kWh	5656 ± 272 kWh	5202 ± 279 kWh
Heating Cost	£271 ± 4	£277 ± 29	£254 ± 27

WG13 Work - General

 Title: Thermal Insulation – Construction products, building elements and structures – In-situ measurement of thermal performance


Five documents:

- Part 1 General Principles,
- Part 2/3 Testing of components or elements
- Part 4 Testing of structures
- Part 5 Testing of Domestic properties

What are we doing?

- It was felt that there was a need for a recognised and ratified standard for the measurement of the "heat loss" of a small building. To include all include all three mechanisms of heat transfer;
- Convection
- Conduction
- Radiation
- = Global Heat Loss / Heat Transfer Coefficient

What is it?

Whole building aggregate heat loss test methodology

- The method produces a heat transfer coefficient (HTC) for the dwelling, Watts Per Kelvin (W/K) how many Watts does it take to lift the building's temp by 1 deg C
- Takes around 1-2 weeks
- The standard also suggests that these may be suitable conditions to carry out airtightness measurements (to allow for a convective heat transfer split) and for U value measurements to be carried out in line with ISO9869
- Home must be vacant
- Late autumn, to early spring acceptable
- · Northern EU climates, further south needs consideration.

How are we doing it:

- 11 members covering industry, academia and research organisations, throughout the EU.
- Working on a methodology for testing from start to finish. Data Collection, Data Analysis and Reporting.
- Not reinventing the wheel, other methodologies will be incorporated (Leeds Beckett method etc.)
- Results can be used to make comparisons with energy models/predictions

- 11 members covering industry, academia and research organisations, throughout the EU.
- Working on a methodology for testing from start to finish. Data Collection, Data Analysis and Reporting.
- Not reinventing the wheel, other methodologies will be incorporated (Leeds Beckett method etc.)

Parts:

- 1.Data collection:
 - ✓ Scope, what's in and out
 - ✓ Data to be collected
 - ✓ Equipment setup, calibration
 - ✓ Detailed methodology, duration of test etc
 - ✓ Reporting of data

- 2. Steady State Data Analysis:
 - √ Scope
 - ✓ Terms
 - ✓ General Principles of Data Analysis
 - ✓ Input Data, errors, gaps, filtering and checking
 - ✓ Measurement uncertainty
 - ✓ Statistical Analysis
 - ✓ Standard reporting format

- 3. Dynamic data analysis
- This standard is currently being defined, to be completed in 2019
- Inputs from IEA A71 are to be used to assist
- Monitoring periods to be shorter, more flexible to internal and external conditions
- As yet largely untested compared to SS method.

- 3. Dynamic data analysis
- Other dynamic methods exist such as QUB, by Saint Gobain, ISABELE by CSTB
- Expertise will be drawn from the innovators of these systems to suitable method, or a series of methods that are deemed to be appropriate.

How does this fit with Annex 71

- The dynamic aspects of the data analysis may have overlaps although the data collection will be different.
- The aim of the two groups ultimately is the same; to measure the HTC.
- We understand the closeness of the groups and standards writing group for WG13 has approximately 50% of people who are in A71.

How does this fit with Annex 71

- Aside from shared goal of HTC there are other overlaps
- Uncertainty analysis
- Repeatability
- Sensitivity analysis
- Data handling
- Reporting outputs and other useful metrics such as comfort etc