11. Guidelines for data analysis from
dynamic experimental campaigns.
Physical aspects

11.1Summary

This chapter presents guidelines for using time series analysis methods and tools for
estimating the thermal performance of buildings and building components. The specific target
is to obtain key performance metrics such as heat loss coefficients, time constants, solar
aperture, effective thermal capacity etc.

The document is integrated in a more comprehensive work. This chapter is the first part is
mainly dealing with physical aspects and specific complexity and problems that may occur
due to the experimental conditions. It may be considered as a question: what quality and
what information does the data contain for analysis? Minimum steps to carry out data
analysis are reported and different alternative analysis approaches are outlined.

The focus is mainly on the most critical aspects particularly regarding energy performance
assessment of buildings and building components. More general techniques also required to
carry out data analysis are briefly presented in this document including references for more
comprehensive information.

Common exercises described in previous chapters facilitated to identify frequent mistakes
leading to unjustified high spread in the results and inaccurate parameter estimates. This
chapter focuses on criteria that must be considered to avoid these mistakes. Graphs are
used to illustrate the considered aspects.

It is assumed that the reader is familiar with basic principles of heat transfer. There are many
text books dealing with this topic such as Refs. 17, 27, etc. It is also assumed that the reader
has some background on measurement techniques that are well described in the literature
and standards (Refs. 28 to 31, etc.).

A case study is considered to facilitate the understanding of some of the recommendations
given in this report. The presented case study consists of a round robin test box built in the
framework of IEA EBC Annex 58. References are given for additional case studies that help
to understand the different aspects discussed and are included within this document.

A second part (Report of Subtask 3 — Part 2, Ref. 19) focuses on statistical aspects and may
help to make decisions in choosing a correct model and analysis of residuals. Both
documents must be considered as complementary and on some occasion they may overlap,
in particular for processing data for input to the modelling work.

11.2Introduction

Analysis and modelling of data obtained from experiments under real climate conditions
require special attention to the treatment of the data during all steps of the elaboration
process. The interest for these techniques and their application has grown in recent years by
industry. This interest has pushed standardisation activities such as CEN/TC 89/WG13 and
research initiatives such as IEA EBC Annex 58. In general it concerns numerous
observations by measurements at regular interval of physical processes. For the case of
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experimental work and analysis for the energy performance assessment of buildings the
physical processes are importantly thermal transfer between a controlled indoor environment
and a variable outdoor environment. In principle all these thermal transfer processes are well
known physical ones, e.g. conduction, convection and radiation. On many occasions data is
produced by people carrying out the technical work of setting up an experiment and
controlling the process of data acquisition. Raw data is made available for analysis with the
purpose of producing one or a few output results (see Table 2 for clarification).

Often mathematicians do not have the profound knowledge about the experiment and
receive the data with limited information. The guidelines will address therefore also a brief
introduction on the most common issues and will address several issues that deal with
examining the data before any data treatment takes place.

As an introduction some basic information on temperature measurements is given as it is
considered as important for a proper analysis of the measured data. The measurement of
temperatures and thermal flows is performed by sensors based on the applied physical
properties of the sensitive part of it: resistances (PT100), thermo-couples (like Cu-Co) and
electronic devices. A correct measurement of the target temperature is required and a closer
look will be given within the context of thermal performance of a building corresponding to
the transfer of heat through the building envelope.

In

Figure 94 a schematic view is given of a building for which it is important to recognise that an
indoor- and outdoor environment exists, separated by the building envelope. The heat
transfer is importantly defined by the air temperatures.

Figure 94: Schematic view of a building.

To guarantee an accurate temperature measurement, the temperature of the sensing
element must be identical to the temperature of the measurand. Different strategies can be
followed to fit this objective, depending on the kind of temperature that is measured. For
example:

- Air temperature measurement: Convection is the main mechanism helping to equalise
air and sensor temperatures so it must be enhanced, and the conductive and
radiative heat transfer should be avoided. This can be achieved by using a fan and
shielding of the sensor.

- Surface temperature measurement: a surface is the separation between two
distinctive entities, usually air or water and solid. Installation of the sensor must
guarantee, that its response to the different heat transfer phenomena (conduction,
convection, and radiation), must be as similar as possible to the response of the
measured surface. This is achieved using small sensing elements and integrating
them as much as possible with the corresponding surface. This may be done by
different techniques depending on the surface, for example: painting the sensors in
the same paint as the surface, or covering them with tapes having similar properties

136



as the surfaces, etc. If sensor integration is not good enough high uncertainties can
be found mainly associated to the different response of sensor and measured surface
to the radiative component.

- Comfort temperature measurement: the perceived temperature from radiation and
convection is usually measured with a black bulb. The conductive thermal component
is avoided.

Radiation is the main source of wrong temperature measurements that give false signals
from the sensor and hence false information to the mathematical models about the physical
processes. The disturbing radiation may arrive from solar radiation, heat sources such as
badly shielded electric heaters and incandescent light bulbs. Shielding of air temperature
sensors is therefore necessary in particular for those that could be hit by solar radiation near
to window openings and those sensors that are placed in a space where electric heaters or
light bulbs are used. Ambient air temperature is usually measured with a special device that
is double shielded and ventilated by natural or forced ventilation (with a small fan that draws
air past the sensor). See Figure 96.
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In Figure 95 an example is given of the effect of solar radiation on the sensor. The
temperature given by the sensors not hit by solar radiation is lower than the temperature
given by sensors hit by solar radiation. Compare the surface temperature of the ceiling with
that of the floor or right wall. One important question here is: does this sensor installation
guarantee that the temperatures of the sensing elements are the same as the measured
surfaces? Good documentation of experiment set up including detailed description of sensor
installation is an indispensable complement for high quality data sets, and would be very
helpful to answer this kind of questions.

As schematically illustrated in Figure 94, air temperatures are measured at different places.
The reason is that for indoor environments without forced ventilation and sometimes where
there is mechanical ventilation (for example with displacement ventilation systems),
stratification occurs that can result in temperature difference in the order of several degrees.
When the model is working with one signal representing the indoor temperature one has to
know the uncertainty of that signal. The experiment can reduce that uncertainty by using a
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ventilator guaranteeing a certain limit on the stratification which provides a better quality input
signal for the mathematical model. In Figure 97, the differences to average and extremes
(minimum and maximum of 7 sensors as positioned in Figure 94) are given for a space of
37m?® that can serve as input for analysis work. Note that the increase is during a 24 hour
heating period.
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Figure 97: Indoor air temperatures; difference to average

The main conclusion from this introductory section is that in general one has to understand
what a measured signal represents. What information is available from the single sensor
signal or from a group of signals (such as the average from 7 indoor air temperatures that
are supposed to represent one indoor air temperature)?

To get more knowledge about measurements and what information is contained in the
observations a pragmatic approach for checking is proposed:

- Graphical plot of signals; it may indicate outliers, sudden changes as function of
expected time constants.

- Statistical methods; average and variance of group of sensors; check of expected
limits.

The measured data leads to ‘raw data’ with a certain accuracy. It should be stored and
documented for later analysis or modelling work.

It leads to the following overview of the interaction between experimental work and analysis
of the obtained measured data. It can be applied to heat transfer through the building
envelope, either a wall or the whole building.
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Table 1: Summary of interaction between experimental work and data analysis

Physical processes

and Experiments

Mathematics

and Statistics

Physical
Object,
Processes,
Parameters
4| General mathematical description of
Feedback | methodology for object, processes,
etc.
Experimental set-up /
Data information required
Data collection
\ Mathematical method, model and
parameters

Data pre-processing

Analysis techniques

_

Parameter conversion

Parameter identification and

Mathematical assessment

Physical parameters and performance
expression

T~

Reporting of performance value and

estimated uncertainty

One may recognise 8 steps:

ONoaRrWN =

the measurement of several phenomena of the physical process under investigation
the production and storage of raw data including quality aspects

pre-processing of data at measurement level (controlled by the acquisition system)
processing of data for model input (depends on analysis method)

representation of the physical system by a mathematical model

model identification from measured data

post-processing of the results and applied model

conversion and reporting of the final result,
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Part 1 of the guidelines is mainly concerned with items 4, 5 and 7. Some overlap may occur
where items 5 and 7 are concerned. Part 2 of the guidelines are dealing mainly with items 6
and 7.

As may be clear from the statements above, the measurements and the analysis of the
observed data are dealing with variable conditions, sometimes induced, sometimes
unexpected. The way to deal with it is the use of appropriate dynamic mathematical and
statistical techniques complemented with general knowledge of the physical processes.

The next paragraph introduces the application of dynamic methods for the assessment of
limited number of physical parameters to be identified from a huge amount of available data.

Dynamic tests allow modelling buildings and building components from experimental test
campaigns carried out under dynamic test conditions. One of the main strength of these
methods is that they permit the extraction of intrinsic characteristic parameters from time
varying measurements. These features are very useful to carry out energy performance
assessment of “as built” buildings, under outdoors weather and in occupied conditions where
these conditions are dynamic.

These analysis approaches must be able to deal with features of the particular experimental
conditions of these test campaigns. Although some characteristic parameters can be
obtained from dynamic tests applying steady state approaches under certain test conditions
(section 11.6.3), it is evident that, in general, time varying measurements call for the
application of system identification techniques and time series analysis tools. However as
built, in outdoors weather and in occupancy conditions requires the capability to take into
account any other phenomena brought by these test conditions. In practice, this means that
these test conditions require modelling additional terms to complete energy balance
equations that may be not necessary in other different test conditions (such as well controlled
tests in laboratories and steady state).

These real test conditions are usually linked to many complex physical phenomena, which
case modelling may become very difficult. In this case simplifications criteria discussed in
section 11.6.2 play an important role to obtain accurate results.

GENERAL CONCEPT

The objective is the identification of a mathematical modelling with application to energy
performance assessment in the built environment. The problem is stated as: from many
measured data to a few estimated values.
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Table 2: Process to obtain a few estimated values (characteristic parameters) from many
measured data. Main elements of the methodology.

INPUT METHODOLOGY OUTPUT
Many observations from Description of physical processes Limited value(s)
time and space into mathematical equations. Period
Physical processes Method should fulfil the aim taking Performance
Literature into account the searched output o
Efficiency
General knowledge Data

Pre-processing /\

\ Model choice
lteration process ——

Post-processing

Statistical tests
Model validation

External tests

How to get from many observations as input for the calculation process to one or a few
limited output values for reporting? In that process the accuracy of input data, the
propagation of the errors in the calculation process and the required accuracy of the reported
value are of high importance.

Once data has been produced (raw data), from a dedicated experiment, it is assumed that
these data contain all information describing the physical processes that a mathematical
model is supposed to analyse. Treatment of the raw data is therefore crucial and should be
performed by someone who has knowledge about the physical processes as well as the
experimental set-up. Pre-processing of data for the purpose of mathematical modeling is
therefore important and should be carried out with caution.

Reduction of observations and signals on the input side implies the examination of the
uncertainty of the input data to the calculation model. More about this aspect can be found
below and illustrated in the figures.

It is very frequent confusing and misinterpreting dynamic test conditions with time dependent
parameters. Test conditions can be steady state or dynamic. Parameters can be constant
(intrinsic) or time varying. Dynamic analysis must be robust giving stable estimates for
constant parameters and allowing the identification of clear dependencies for non-constant
indicators. Dynamic conditions don’t change classical definitions of physical parameters.
Equations used to extract these parameters from experimental data must take into account
all the relevant effects which are present in given test conditions. Consequently dynamic
conditions should not change parameters but call for equations adapted to the test
conditions.

It must be taken into account that some performance characteristics, which are not constant
by definition, can be can be handled as constant in practice provided that their variation is
under the range of uncertainty of the parameter estimates. Discerning when these
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approximations are valid requires some knowledge of building physics. For example U-value
is not a constant parameter. However it is used as constant in many practical applications.
This is a reasonable assumption under some conditions, but could it be incorrect in some
cases such as poorly insulated walls and windows.

This document describes guidelines for dynamic analysis for estimating the thermal
performance of buildings and building components focusing on physical aspects. Minimum
steps to carry out data analysis are reported and different alternative analysis approaches
are outlined. This document is mainly focused on the most critical aspects particularly related
energy performance assessment of buildings and building components. More general
techniques which are also required to carry out data analysis are briefly presented in this
document including references to more comprehensive information. Case study considered
in chapters 3, 4, 5, 6 and 7, is used to facilitate the understanding of some of the
recommendations given in this chapter. References for additional case studies that help to
understand the different aspects discussed are included in the document.

This is considered as a multidisciplinary problem that requires application of knowledge in
different areas such as physics and statistics. This first part is mainly dealing with physical
aspects. A second part focused in statistical aspects has been also elaborated. Both
documents must be considered as complementary.

11.3Physical parameters

Definition given by International standards are used in this document - particularly the
following included in ISO 7345:1987 (Thermal Insulation — Physical Quantities and
Definitions):

- Thermal resistance, R: Temperature difference divided by the density of heat flow
rate in the steady state condition. Units: mK/W.

- Thermal conductance, A: Reciprocal of thermal resistance from surface to surface
under conditions of uniform density of heat flow rate. Units: W/(m?K).

- Thermal transmittance, U: Heat flow rate in the steady state divided by area and by
the temperature difference between the surroundings on each side of a system.
Units: W/(m?K).

The following are defined by the ISO 13790:2008(E) (Energy performance of buildings -
Calculation of energy use for space heating and cooling).

- Heat transfer coefficient: Heat flow rate divided by the temperature difference
between two environments; specifically used for heat transfer coefficient by
transmission or ventilation. Units: W/K.

- Transmission heat transfer coefficient: Heat flow rate due to thermal transmission
through the fabric of a building, divided by the difference between the environment
temperatures on either side of the construction. Units: W/K.

- Ventilation heat transfer coefficient: Heat flow rate due to air entering an enclosed
space, either by infiltration or ventilation, divided by the difference between the
internal air temperature and the supply air temperature. Units: W/K.

Characterization by system identification techniques requires a lumped representation of
building fabric. The following parameters are usually considered in such Ilumped
representation of a given building envelope:

If you want to list something, proceed as follows:
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- UA: Overall thermal transmittance coefficient: the heat flow rate in the steady state
divided by the temperature difference between the surroundings on each side of the
system or component, in W/K. For the 1-D case the U-value, in W/m2K.

- gA: Total solar energy transmittance or solar aperture: the heat flow rate leaving the
component at the inside surface, under steady state conditions, caused by solar
radiation incident at the outside surface, divided by the intensity of incident solar
radiation on the component, in m?. For the 1-D case the g-value [-].

gA and g can show some variability, taking into account the theoretical expressions to
calculate the g value of opaque components (equation (6) in chapter jError! No se
encuentra el origen de la referencia.) and glassing (equation (9) in chapter 5). This
variability can be assumed negligible for opaque components, in most practical
applications. Considering glassing, these parameters depend also on the
transmittance of the glassing that depends on the incidence angle, and consequently
on the time of the year. Smaller variability than the uncertainty on the parameter
estimates is expected, but it should be analysed and discussed in each particular
case study. The variability of these parameters for the opaque wall and round robin
box is discussed in sections 2.2.1 and 0 respectively.

Interpretation of effective heat capacities in lumped representations: As mentioned in
the introduction, dynamic tests allow modelling buildings and building components from
experimental test campaigns carried out under dynamic test conditions. The starting point of
this analysis is considering energy balance equations that include the measured variables
and characteristic parameters that must be identified. Dynamic energy balance equations of
any given system must include terms representing energy accumulated in the system. This
accumulation is governed by effective heat capacities that can be estimated as the other
defined parameters. However these heat capacities can be considered as auxiliary
parameters that regulate the energy that is accumulated in the system and depend on the
characteristics of the system and its boundaries. Then these parameters are considered
effective heat capacities and must not be compared to the theoretical heat capacities
obtained from the characteristics of the construction materials of the building envelope.

11.4Experimental aspects related to identification

This section discusses the aspects that must be taken into account and the features that
must be implemented to optimise the test regarding data analysis for identification.

Analysis objectives

First, experiment design must take into account the final objectives of the identification
analysis. The generic objectives listed below will be considered for the following discussion:

- Characterize the heat losses of the envelope of one given zone through the heat
transfer coefficient to its boundary zone. The boundary could be the outdoor or any
other zone.

- Characterize the solar gains of the main zone through its overall gA-value.

- Characterise the dynamic performance of the main zone through an effective heat
capacity.

Main zone and boundaries

The main zone and boundaries must be well defined and clear for analysis and consequently
they must be taken into account for experimental design.
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Requisites related to the main inputs and driving variables

The experiment design must guarantee that the phenomena that must be characterised are
happening and strong enough for their analysis. Phenomena are considered strong enough
in this context, when the amplitude of the corresponding driving variable is significantly
higher than the uncertainty in its measurement. Otherwise signal to noise is poor.

The same criteria must be applied to the amplitude of any other variable required to complete
the energy balance equation used in the analysis.

Applying these conditions to the considered generic objectives, the following conditions are
necessary:

- To identify heat transfer coefficient to the outdoors, the experiment set up must
ensure strong enough heat loss through the corresponding components. This is
achieved maximising the temperature difference between the air in the main zone
and the outdoor air, which is the driving variable in this case.

This maximisation must be implemented taking into account the limitations due to the
safety recommendations of the construction materials. Limitations due to the
variability of characteristic parameters with temperature must be also considered. Too
high indoor temperature that could lead to damage construction materials as well as
variations of parameters that are not seen in actual operational conditions, must be
avoided.

- Analogous considerations must be done to identify heat transfer coefficients to the
boundaries. In this case the main driving variable, is the temperature difference
between the air in the main zone and the air in the adjacent zones. This difference
must be maximised taking into account the limitations mentioned in the previous
paragraph.

- To identify the overall gA-value, solar gains must be strong enough during the
experiment. This is achieved when the experiment contains sunny days, when solar
radiation is high, which is the driving variable in this case.

- To identify the effective heat capacity the system must be excited by dynamic input
signals in a wide range of frequencies covering the characteristic time constants of
the system. This is achieved e.g. by applying a ROLBS power sequence. See
statistical guidelines for further information of the ROLBS sequence (ref. 19). Some
examples can be seen in section 4.2.5 chapter 4, section Figure 98 in this chapter,
and ref. 23

- Notice that heating in the main zone during the experiment is necessary to
maximise temperature differences between indoor air and ambient and adjacent
zones. Free running tests may lead to poor signal to noise ratios in the temperature
difference measurements and problems with identifiability. Additionally, the heating
power is an important variable to complete the energy balance equation used in the
analysis, so it must be strong enough in the experiment.

The experiment should be designed aiming to maximise the degree of accomplishment of all
these conditions, for the given weather in the test site and the constraints resulting from the
heating systems available in each case.

Homogeneity of the indoor air temperature

The different sources of heat such as heating devices and solar radiation can lead to some
degree of inhomogeneity of the indoor air temperature contributing to the uncertainty budget
of the parameter estimates.
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A fan could help to achieve better homogeneity. However it must be taken into account that
this strategy could introduce perturbations in the interior convection coefficients, so its
usefulness is limited to cases when these perturbations could be considered as negligible.

When unavoidable air stratification is present in realistic experimental campaigns, the
uncertainty in parameter estimates due to temperature stratification in indoor air must be
taken into account and evaluated. Measurements giving information on air stratification are
very useful. This information on air temperature distribution is useful to investigate the
following issues:

- Uncertainty in parameter estimates due to temperature stratification in indoor air.

- Different options to achieve an optimum representation of indoor air temperature, for
example: considering spatial averages, weighted averages, a reduced selection of
measurement points, or any other.

11.5Minimum steps for data analysis

Data analysis must consider at least the following steps:

1 Pre—processing: Any pre-processing carried out must be reported. Participants in the
analysis exercises were encouraged to report data overview based on plots,
discussion about quality of data and their suitability to fit objectives, etc.

2 Modelling approach: The methods and models used must be described. The
hypotheses and approximation about the physics behind the considered candidate
models must be justified. Schematic representations of heat flows in the building are
recommended to support explanations. The process of model selection and the
decisions made in this process must be explained. The software tools used to identify
the parameters must be mentioned.

3 Validation: The validity of the results must be demonstrated. Statistical criteria are
very useful in this process. Results must not contradict physical consistency. The
process followed to demonstrate the validity of the results must be explained.

4 Results using different data must be compared. Since the data comes from the same
physical system the best model should give similar results for two (or more) data
series.

5 Results: A value estimated for each parameter and its corresponding uncertainty
must be clearly marked as the final result.

6 A list of the hypotheses and approximation of the physics behind the model finally
selected to give the final results, must be given together with the final result.

7 Conclusions: Any relevant finding resulting from the analysis, about the results, about
the experiment set up and measurement campaign, etc., must be summarised.

8 Reporting: Reports must include at least a section devoted to each of points 1 to 5.

Feedback among the different points should be made in every phase of the process. Is the
model accepted? It is advisable to apply more than one method to get a better understanding
of the whole problem. Common sense should always be used and all the available physical
and statistical knowledge should be used whenever possible.
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11.6Data analysis

This section summarises the aspects that must be considered. Sub-sections 11.6.1, 11.6.2
and 11.6.4 are common to all the analysis approaches considered in this document. Section
11.6.3 focuses on specific aspects of some different approaches that can be chosen.

11.6.1 Preprocessing

Data analysis starts with a qualitative analysis of the quality of the data based on data
overview. The objective of this data overview is to detect any abnormal behaviour in the
tendencies of the measured variables, sensor failures, etc.

This qualitative analysis is based on the prior physical knowledge of the thermal system
under study. Knowledge of the measurement principles of the sensors, transducers and data
acquisition systems, can help to interpret unexpected behaviour of the recorded data.

The result of this analysis can be the rejection of some measurements, the decision of
correcting some problem on the experiment set up and repetition of the experiment, or the
acceptance of the data for the analysis.

Averaging and filtering

Averaging is frequently used as filtering and also as resampling technique. Other filtering and
resampling techniques can be applied. Discussing filtering and resampling techniques is out
of the scope of this document. However some relevant issues regarding their application are
discussed in the following.

In general any averaging and filtering carried out must be justified, explaining its
interpretation, which are the beneficial performances that are expected applying it, why
improvements are expected, etc.

The application of filtering techniques is useful when there is certainty that their effect is
removing information in the data that doesn’'t correspond to the phenomena that we are
studying in the building or building component. However filtering and averaging could have
harmful effects if it removes relevant information to the process under study.

As an example the tests of the round robin box in Almeria is considered, where tests have
been optimised regarding analysis. Particular focus was put in these tests in optimising the
accuracy of the measurement of heating power, and regarding amplitude and time resolution
(see section 5.5.1 of this document). Amplitude of the heating power, set point of indoors air
temperature and dead band have been set such that switching frequencies in the heating
power are lower enough than the sampling frequency to guarantee good time resolution.
Wrong resampling can make ineffective this experimental set up optimization, and lead to
conclude erroneously that signal to noise ratio is poor. See Figure 98 and Figure 99.

In addition it is known that the amplitude of the heating power in these tests only can have
two values depending on the status of the switch (on/off), with very small fluctuations around
the “on value” (due to the stability of the power source). However averaging can bring some
values very far from the actual values of the heating power, and consequently introduces an
unnecessary source of uncertainty. See Figure 100.

Consequently in this case this resampling gives poorer signals than the originals so it makes
no sense.

The effects of different averaging and resampling periods in other measured variables which
are relevant in this case study are shown in Figure 101 (indoor air temperature), Figure 102
(vertical south global solar radiation in clear sky days), Figure 103 (vertical south global solar
radiation in cloudy and clear sky days) and Figure 104 (outdoor air temperature).
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Averages are suitable in steady state methods which are integral approaches where
averages are used to represent integrals. The situation is radically different in differential
approaches where the interpretation of time averaging as integration makes no sense.

11.6.2 Construction of candidate models based on hypotheses derived from prior

physical knowledge

The starting point of the analysis is considering energy balance equations that include the
measured variables and characteristic parameters that must be identified. The characteristics
of the studied component and given test conditions are taken into account to build all the
candidate models. This step is common to all the analysis approaches.

Then candidate models must be written trying to answer the following questions:

What is the system to which the energy balance equation will be referred to?. Is it a
volume?, is it a flat surface? What is the considered system and their boundaries?

Some case studies where the energy balance considered for modelling is referred to
a surface are reported in Refs. 34 and 35. A case study where the energy balance
considered for modelling is referred to a volume is reported in Ref. 36.

What are the phenomena that theoretically participate in the considered energy
balance equation?

Which of these phenomena are relevant in practice to the considered case study
under the given test conditions?

What is the most efficient way of modelling each phenomena considered as relevant
in each case study?. Notice that here efficiency is referred to model accuracy, cost of
used measurement devices, and model simplicity. Modelling should include in its
objectives the maximisation of accuracy and the minimisation of costs of
measurement devices as well as minimising model complexity.

It must be taken into account that sometimes expressions that could be considered
more accurate in principle, could in practice give bad performance. This behaviour
could be explained since these expressions bring to the models information and also
uncertainty, and in some cases the weight of the introduced uncertainty could be
higher that the weight of the introduced information. Any of the following issues could
explain this behaviour:

» Sometimes these expressions are approximation themselves. In this case
including effects that have low influence on the global energy balance could
bring more uncertainty than information.

» The contributions associated to each of the variables incorporated in such
expressions (the more variables the more uncertainty). As a consequence,
including effects that have low influence and are depending on many
measured variables could lead to models with bad performance.

Statistical tests can give very useful support to study this issue.
» Being far from the scope of applicability of these expressions.

Consequently it is possible that using more sophisticated expressions could
lead to more inaccurate models at the end. Conversely we can find very
simple expressions that however capture the main essences of the studied
process leading to accurate models.

Which are the main driving variables of each of the phenomena recognised as
relevant for the considered case study?
Which variables must be considered inputs and outputs according to causality?
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If it is not possible to answer some of these questions a priori, several candidate models
according to the different possibilities can be considered and evaluated.

If too many options are identified constructing candidate models in this way, it is useful to
stablish some prioritised order first studying independently each of the relevant effects
identified and then combining those that evidence improvement regarding models not
including them. This strategy to construct candidate models was followed in the work
reported in ref. 48.

Specific recommendations to construct candidate models for a case study: round
robin text box.

This section further discuses criteria to construct candidate models focusing on the round
robin test box considered in chapters 3, 4,5, 6 and 7.

The first step to construct candidate models to fit this objective is to identify the system to
which the energy balance equation will be referred to. In this case this energy balance will be
referred to the volume of air confined by the building envelope.

To propose candidate models we need to formulate hypotheses according to the following
questions 1 to 3. Candidate models must be based on approximations derived from these
hypotheses.

1 Are the solar gains through the opaque walls (outside to inside) relevant regarding
the other terms in the energy balance equations?.

- Candidate models considering only solar gains through the window make sense for
this case study for data recorded in Belgium during winter (chapter 4), taking into
account: 1. The low levels of solar radiation (mainly diffuse), 2. Due to the sun
position in winter, the strongest global solar radiation is on the south vertical external
surface, 3. Probably high insulation materials in the opaque walls, 4. White external
surface that contribute to reduce solar gains.

- This issue can be investigated considering mono-dimensional analysis, based on
energy balances of energy flows through the internal surfaces of the opaque walls.
Heat flux measurement devices, on the internal face of each wall, measure the net
heat flux density through the internal surface of each wall. These devices are used to
carry out this analysis:

» Studying if solar radiation influences this net heat flux through these surfaces,
is useful to discern if solar radiation through the opaque walls is relevant or
negligible.

» The identification of U and g values of the walls using this measurement and
the energy balance through the corresponding surface is useful to discern if g-
value of the opaque walls is relevant or negligible.

The mono-dimensional analysis of the roof in Spain (chapter 5) in summer can be
studied as an unfavourable case with high levels of incident solar radiation, to
evaluate if the g value is or isn’'t negligible on the opaque walls. In this surface the
global solar radiation is high compared to other orientations and also compared to
tests in Belgium. If it is concluded that solar radiation is not relevant in this roof we
could extrapolate that it is not relevant in any other opaque wall of the round robin
box.

Carrying out analogous mono-dimensional analysis to study floor, and all the others
opaque walls is strongly recommended because it would be very useful to confirm
and validate the results and conclusions obtained from the analysis of the roof.
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Would it be sufficient to compare plots of the heat flux measurements through the
different walls, to conclude that solar gains are relevant when we observe differences
in the heat fluxes and these differences are correlated to solar radiation?.

No, this is not enough to do this affirmation. If we see that heat flux through the roof is
lower than heat flux through the floor it may be: either because we have solar gains
that reduce the net heat losses through the roof, or because the solar radiation that
enters through the south window reaches the internal surface of the floor and
increases the net heat flux through the floor. Similar considerations can be done for
east and west walls. See Figure 105.

It must be taken into account that differences smaller than the uncertainty in the
measurement of the heat flux sensor cannot be interpreted as actual differences. It
must be remembered that the minimum uncertainty in this measurement is 5%
(Uncertainty of the heat flux sensor).

Is it possible to assume a constant UA value?, Has the external surface heat transfer
coefficient a relevant dependence on the wind speed?, Have the surface coefficients
a relevant dependence on the temperature of the corresponding surfaces?, Have the
thermophysical properties materials a relevant dependence on temperatures?.

Mono-dimensional analyses are useful and recommended also to study these issues.

Is air leakage relevant to the energy balance equation when the whole volume is
considered to calculate the UA value?. If it is relevant we need to model this term. It
makes sense to consider this contribution negligible in this case study, but there are
alternatives that can be considered in case of being not negligible as justified below.

Preliminary tests for air-leakage were done and reported by BBRI (see Chapter 4 in
this document). These tests demonstrated that air-leakage is negligible.

Even if air leakage is not negligible, the corresponding contribution to the energy
balance equation could be considered negligible if the outdoor air flow is already
heated up to the indoor air temperature level before being delivered to the room, then
there is no heat loss involved. (Ref. 38, page 45).

If the air enters the test room via a shortcut, then a 100% correction for the effect of
air flow on heat balance is required. In practice this phenomena can have an effect on
the HLC between zero (fully pre-heated) and maximum (no preheating at all). (Ref.
38, page 45).

When air leakage between indoors and outdoors is not negligible, a coefficient
depending on the pressure difference between both environments could be included.
In practice pressure difference is dependent on temperature difference and also on
wind speed and direction. Several options for this effect considering first order
approximations of these two variables are suggested by Ref. 38 (section 5.1.).

Improvements could be investigated considering other alternatives reported for this
effect in the literature (ref. 40).

11.6.3 Modelling

This section briefly introduce some of the most usual modelling approaches and make
emphasis on the physical aspects in each particular case. The main focus on these sections
is on the key steps that require application of physical criteria, which are highlighted here.
These aspects are crucial to obtain accurate results.

Relevant statistical aspects of these modelling approaches are described in detail in the
statistical guidelines (Ref. 19).
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Steady state approaches

In steady state all the physical quantities are time independent, according to the definition of
steady state given by ISO 9251: 1987. Consequently steady state equations applied to raw
data are not valid in dynamic test campaigns.

However integrated dynamic equations become analogous to steady state equations, using
time averaging to represent integrals when the integration period is long enough for the
accumulation terms to become negligible compared to the other energy flows in the equation.
In this case steady state equations can be applied to dynamic test campaigns.

The applicability of these methods to dynamic data has significant constraints as discussed
by Ref. 42. This reference reports on the study of the errors in the U-value estimates for
different walls, using the steady-state equation. This study is done for instantaneous
measurements as well as considering averages representing integrals. It concludes that
instantaneous measurements can’'t provide accurate estimates of the U-values but its
accuracy is significantly improved if time integrated variables are used. It is also shown that
the error in the U-value estimation is minimised by using a multiple of 24 hours as the
integration period. It affirms that the minimum valid integration period depends on the
characteristics of the wall and weather conditions. It also demonstrates that longer
integration periods are required when temperature fluctuations are higher, temperature
difference between indoors and outdoors are lower and walls are heavier.

Average method and (multi-) linear regression methods based on averages belong to this
family of models, which base their validity in using averages having their origin as integrals of
dynamic formulations.

These models give very bad results when:

- Premises for applicability are not met. More details about these requisites for
applicability for average methods are reported in ISO 9869 (Ref. 43).

- Inappropriate energy balance equations are applied in (multi-) linear regression
methods. It must be remembered that criteria given in section 3.2 are valid also in this
approach to construct candidate models.

It must be remarked that when a product or other operation with different variables is
considered in a model, all the products and other operations must be done before the
average. This is easily understood keeping in mind that time integral of dynamic energy
balance equations are behind time averaging in the origin of these approaches.

These approaches applied to dynamic test campaigns are not efficient, but they can be
useful in certain applications. Their main drawback is that sometimes extremely long test
periods are required.

These methods were considered at the beginning of the PASSYS project (ref. 44), but were
superseded by dynamic approaches that are more accurate, efficient and suitable for
dynamic experimental conditions (Refs. 45 to 47).

This analysis is recommended as a first exploratory approach to each new problem. Such
preliminary analysis is useful for indicating the order of magnitude of thermal parameters, to
investigate which are the most relevant effects in the energy balance equations, what
approximations are more suitable for each relevant effect, etc. (Refs. 7 and 48).

Linear models in transfer function form

These models are described in Refs. 49 and 50. Ref. 47 presents the application of this type
of models to estimate the thermal properties of building components from outdoor dynamic
testing, imposing appropriate physical constraints.
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The following is focused on ARX models as an example without losing generality. In these
models the output, y(t), is expressed as linear function, using constant coefficients, a; and b;,
of a number, s, of past readings from the inputs, u(t), and also from a number, r, of past
readings of output itself as follows:

W(t)+ay(t—A)+...+a )t —rAt) = bt —bAL)+...+bult — (b+5)At) +e(?) (25)
Where At is the sampling interval, e(t) represents the model error.

Considering a dynamic ARX model including the same variables as the steady state energy
balance equation of the given system, the required physical parameters are found from the
coefficients of the dynamic ARX model, by imposing as physical constraint that the following
equations must be coincident:

1. The steady-state energy balance equation of the considered system.
2. The ARX model, when all its inputs and outputs are constant.

This implies that the coefficient of each variable must be the same in both equations. In the
case of steady steady-state energy balance equation these coefficients are the target
physical parameters. In the case of the ARX model, with constant inputs and outputs, the
coefficients become algebraic combination of the a; and b;, parameters obtained for the
dynamic ARX model.

Then the steady-state physical parameters can be found by comparing these two equations
(ref. 47). This comparison is possible provided that the ARX model contains the same
variables as the steady state energy balance equation of the considered system.
Consequently the first step in this analysis approach is to deduce and write the appropriate
steady state energy balance equation that must be based on previous physical knowledge.

For example, if the steady-state energy balance equation for a given system is ®=U(T;-T,)-
gG,, then the dynamic ARX model used to obtain the U and g values must contain the
following variables: ®, T;, T, and G,.

Different candidate models can be taken into account as discussed in section 11.6.2, taking
into account different approximations to write the steady-state energy balance equation.

Once the variables that must be included in the model have been identified, it is necessary to
decide which of them are considered inputs and which of them are considered as outputs.
This assignment must be based on causality of these variables. Usually, either indoor
temperature or heat flux is selected as the model output. Multi-output models can be also
considered and have shown very good performance in some case studies where test were
carried out under unfavourable test conditions (Ref. 51).

Notice that although this is a linear approach, some non-linear effects can be considered by
a change of variable. An example is reported in ref. 58. In that work, long wave effects
depending on surface temperature raised to the fourth power T*, were included in the models
through a new variable y=T*.

Models in continuous time state space form based on SDE

The continuous—discrete stochastic state space model is a model that consists of a set of
nonlinear discrete, partially observed stochastic differential equations (SDEs) with
measurement noise, i.e.

dx, = f(x,, Uy, t, 0)dt + o(uy, t, 8)doy (26)
Yk = h(Xg, U, t, 0) + e (27)
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where 0 € © R is parameter vector; f(:)eR", c € ® R™ and h(-)eR' are nonlinear functions;
{og is an n-dimensional standard Wiener process and {ey} is an I-dimensional white noise
process with e, € N(0, S(uy, t, 0)).

This class of models is further described in Ref. 52 and treated by the tool called Continuous
Time Stochastic Modelling (CTSM), Ref. 53.

The state space representation is very useful and flexible to represent physical systems
governed by differential equations, which offers a very high potential to model a wide variety
of physical systems.

Diffusion terms and modelling errors (o(uy, t, 6)dw; and e in the previous equations) allow
achieving very accurate parameter estimates.

It must be highlighted that the system equations can include measured as well as non
measured states which is a very useful feature in modelling physical systems.

RC models can be considered here. However these family of models are a reduced subset of
the state space models that can be used and don’t make use of these capabilities to their full
extent.

Case studies applying this approach are reported in Refs. 35, 54 and 55. Ref. 54 reports the
application of RC models to a full size building. Ref. 35 reports the modeling of a building
integrated and ventilated photovoltaic system. It demonstrated that a description of the
nonlinear heat transfer is essential for modelling of surface effects due to long wave radiation
and convection in this particular system. It showed also the usefulness of certain
approximations to take into account unmeasured effects. Ref. 55 reports the application of
the same model to evaluate the effect of different set ups in the heat transfer coefficient for
the same PV integrated modules.

11.6.4 Model validation

Validation is a key issue of the problem. Statistical criteria are very useful guiding and
optimising the process of model selection. Results must not contradict physical consistency.

The following criteria for model selection and validation suggested by Norlén (ref. 56) are
recommended:

1. Fit to the data. The model residuals should be 'small' and 'white noise'. A necessary
condition for 'white noise' is that there should be neither autocorrelation in the
residuals nor correlation between the residuals and the input variables.

2. Internal validity. The model should agree with data other than that used for parameter
estimation (cross validation).

3. External validity. The model results should not (without strong reason) conflict with
previous experience or other known conditions.

4. Dynamic stability. In steady state, the model should provide an output after a
temporary change in an input variable that gradually fades out (if the model is
intended to describe dynamic characteristics).

5. Identifiability. It should be possible to determine the parameters of the model uniquely
from the data.

6. Simplicity. The model should be as small as possible.

If the residuals contain periodicities, a study of the correlation in the frequency domain can
be more useful to reveal such periodicities than the autocorrelation function. The
periodogram shows how the variation of the residuals is distributed on frequencies. For white
noise this variation is equally distributed, i.e. the cumulative periodogram is a straight line
from (0,0) to (0.5,1). See Ref. 57 for further details.
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Particular care must be taken in the interpretation of residuals with a frequency of 24 hours.
In a first approach a non-negligible correlation between the model residuals and solar
radiation could lead to the suggestion for a more detailed description of the solar radiation in
the model for further improvements. However it must not be forgotten that, many variables
can show a relevant correlation with solar radiation, so any other effect not properly modelled
can show problems in the residuals in the same frequency as the solar radiation. This
behaviour is highlighted in sunny locations where levels of solar radiation are high. The
effects in the following list can be mentioned as examples of phenomena that could produce
this behaviour.

If you want to list something, proceed as follows:

- Air leakage that can depend on wind speed and/or outdoor air temperature, both
depending on solar radiation.

- Long wave effects resulting from high surface temperatures due to solar radiation.
One example of this issue is reported in 58.

- U depending on thermal conductivities which depend themselves on the temperature
of the materials that finally depend on solar radiation.

- Wrong resampling disregarding the sampling theorem (See section 0 and Figure 99).

- Ete.

If validation criteria don't fit, models must be rejected and new models must be reformulated.
Conclusions from the previous analysis and validation process are very useful to construct
new models, reconsidering hypothesis and rewriting candidate models according reviewed
hypothesis. Redesigning experiment set up and carrying out new experiments might be
necessary.

Practical recommendations

This section reports some practical recommendations reported in 38. These
recommendations are based on experience from different European projects related to
energy assessment of building components, such as IQ-TEST, etc. (ref. 39).

A. Preliminary check on residuals:

Plot of average and root mean square of the residuals are very useful in a preliminary
analysis to detect problems related to data and modelling. In particular the following checks
are recommended:

- If the root mean square (RMS) value of residuals is 'unexpectedly' large: check data
file or model for errors.

- The mean value of residuals should be significantly smaller than the RMS value; if
not: systematically biased output and check data file or model for errors.

- If at certain point the residual is (or starts to be) higher than roughly three times the
RMS value: check for erroneous input or output data at that point.

B. Evaluation on the basis of confidence intervals:

If a parameter has a very high large confidence interval: Look at parameter significance and
correlation between parameters then adapt the model to remove insignificant and highly
correlated parameters:

- If not highly correlated with one or more other parameters, freeze the parameter at
some value indicated by the identification result or at a value which is physically
meaningful.
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- If highly correlated with one or more other parameters, then freeze one of this group
of parameters: choose the one with the highest deviation from what seems physically
feasible.

Freezing parameters and establishing constraints among for different parameters in the
model according to physical knowledge is usually helpful to solve these problems.

C. Evaluation of the characteristic parameters and individual parameters with physical
meaning:

It must be taken into account that some individual parameters have only mathematical and
no physical meaning; these cannot be checked for their physical meaning; for instance
individual conductances and capacitances inside a construction without internal
measurements.

The following checks are useful regarding parameters with physical meaning:

- Check if values deviate from values expected based on prior knowledge......

- Check if the confidence interval of a function of parameters is unexpectedly high; if so
the test sequence is not appropriate for this function or the model is not appropriate
(non-linearities?,...etc.).

D. Residual statistical analysis:

Autocorrelated residuals indicate that the model is not capable of following the dynamics of
the system. This may be due to any of the following issues:

If you want to list something, proceed as follows:

- A missing input or error in the input data. This can be solved trying to find the missing
input variable

- A higher order influence of one or more already known input variables. In this case a
higher order model may lead to improved results.

Combining parameter values such as string of identical resistances and capacitances can be
an useful strategy to avoid that the model becomes overparametrised.

A statistical post processing program may help to detect which information is still contained
in the residuals.

E. Cross-validation:

Compare results with results on different data set. A convenient way is to repeat the
identification on the data set with twice the original length and check for consistency. Since
the data comes from the same physical system the best model should give similar results for
both (or more) data series.
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Figure 98: Effects of different resampling periods and techniques on power measurement in
a ROLBS sequence. (Series 5 CE4. Test in Almeria). Different behaviour is observed for the
different averaging and resampling intervals. Faithful representation of the actual variable for
10 minutes resampling and averaging is seen in graphs (a) and (b). However relevant
information on the measured variable is lost in some periods when longer intervals are
considered for resampling and averaging. This is particularly evident in graphs (e) and (f),
with 60 minutes averaging and resampling, around the time interval 181.0 to 181.5.
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Figure 99: Effects of different resampling periods and techniques on measurement of heating
power. (Series 4 CE4. Test in Almeria). Relevant information on the measured variable is
lost when resampling and averaging are applied in all cases.
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Figure 100: Some examples of resampling eliminating relevant information.
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Figure 101: Effects of different resampling periods and techniques on measurement of indoor
air temperature. (Series 5 CE4. Test in Almeria). Faithful representation of the actual variable
for 10 minutes resampling and averaging is seen in graphs (a) and (b). However relevant
information on the measured variable is lost in some periods when longer intervals are
considered for resampling and averaging. This is particularly evident in graphs (e) and (f),
with 60 minutes averaging and resampling, for the time interval 181.0 to 181.5.
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Figure 102: Effects of different resampling periods and techniques on measurement of
vertical south global solar radiation. (Series 5 CE4. Test in Almeria). The different averaging
and resampling frequencies give faithful representation of the actual variable on sunny days.
Different performance is observed for cloudy days (see Figure 103).
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Figure 103: Effects of different resampling periods and techniques on measurement of
vertical south global solar radiation for sunny and partly cloudy days. (Series 5 CE4. Test in
Almeria). Different behaviour is observed for clear sky and partly cloudy days. In the case of
clear sky, the different averaging and resampling frequencies give faithful representation of
the actual variable. However when days are partly cloudy the original measurement present
relevant variations that are lost when resampling and averaging are applied.
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Figure 104: Effects of different resampling periods and techniques on measurement of
outdoor air temperature. (Series 5 CE4. Test in Almeria). Some information is lost for the
different frequencies of averaging and resampling applied. Equivalent behaviour is observed
for the different averaging frequencies, which eliminate small oscillations in high frequencies
mainly around midday. In principle this filtering is not considered harmful because these
oscillations seem to follow a white noise pattern in the range of the uncertainty in the
measurement of this variable.
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Figure 105: Different possibilities of heat flows due to solar radiation: 1.- Negligible. Then the
net heat flow (green) is due to heat lost (blue). 2.- Non negligible from outdoor to indoor.
Then the corresponding contribution is subtracted from the heat lost to give the net heat flow
(as shown in this example through ceiling). 3.- Non negligible from indoor to outdoor. Then
the corresponding contribution is added to the heat lost to give the net heat flow (as shown in
this example through the floor).
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