

Building Energy and Location

Big Data Handling for Optimized Integration of Energy Systems in the Building Sector

J.J. BLOEM DG JRC

http://ec.europa.eu/dgs/jrc

Serving society
Stimulating innovation
Supporting legislation

SUMMARY

- EULF Feasibility Study "Location Data for Buildings related Energy Efficiency Policies"
 - main objectives, achievements and conclusions
- The role of INSPIRE in the EULF Energy Pilot
 - what INSPIRE will deliver, what can deliver, by when?

JRC TECHNICAL REPORT

Location data for buildings related energy efficiency policies

European Union Location Framework (EULF) Project Feasibility Study

Hans Bloem, Ray Boguslawski, Maria Teresa Borzacchiello, Piergiorgio Cipriano, Albana Kona Giacomo Martirano, Isabella Maschio, Francesco Pignatelli

2015

Iner Research Centre Supert FUE 27411

BACKGROUND

Energy and Location

European energy policy Directives

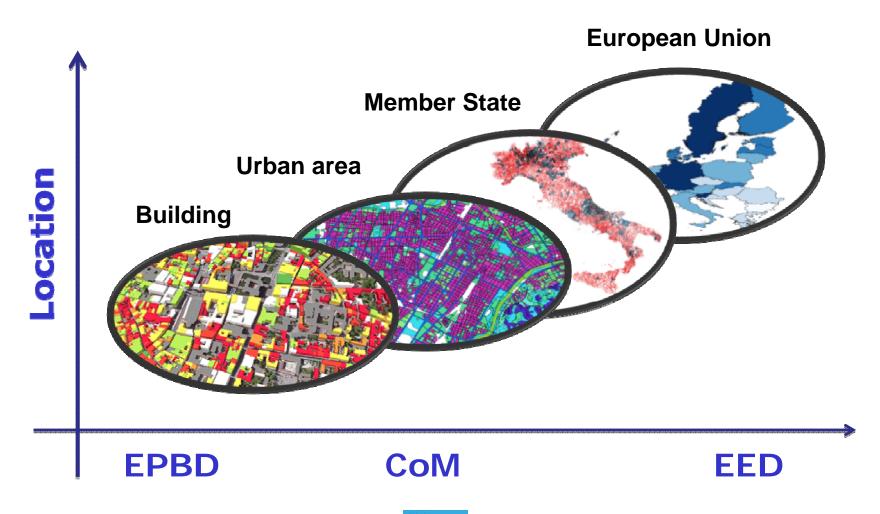
Directive 2010/31/EU - Energy Performance of

Buildings – EPBD; efficient use of energy in buildings

Directive 2012/27/EU- Energy Efficiency Directive –

EED; efficient energy systems

European energy policy initiative


Covenant of Mayors (CoM), involving local and regional authorities

European Union Location Framework (EULF) project; INSPIRE Directive

ENERGY and CITIES

OBJECTIVES

Energy and Cities project

Assessment of energy use in the built environment by using geo-located data to improve the quality of input data

- 1) to support policy-makers in reporting and monitoring of energy policies and initiatives and
- 2) to harmonise the monitoring and reporting of energy efficiency policies at different scales.

Method may support the whole policy life-cycle e.g. urban planning, implementation of measures for efficient renovation of buildings, etc.

BIG DATA - BUILDING STOCK

BPIE Europe's buildings under the microscope; a country-by-country review of the energy performance of buildings (2011)

> 200 million dwellings in EU-28 Over 75% of building stock is older than 25 years (near estimation).

Averaged final energy consumption data

- Residential 185 kWh/m²
- Non-Residential 280 kWh/m²

25.4.2007

EN

Official Journal of the European Union

L 108/1

INSPIRE Directive

- General rules to destablish a frain frast fucture of direspatial in the contraction in Europe
 - Community environmental policies
 - Policies or activities which Impacton the environment
- To be based on SDIs and LMOs established and operated by the Member States 2007/2/EC of the European Parliament and of the Council
- Does not require collection of new spatial data
- Scopestablishing an Infrastructure for Spatial Information in the European Community (INSPIRE)
 - Spatial data held by or on behalf of a public authority

THE EUROPEAN UNION, THE EU

Entry into force 15 May 2007

information so that information and knowledge from different sectors can be combined.

Having regard to the Treaty establishing the European Commu-E&L nity, and in particular Article 175(1) thereof,

SYNERGY and HARMONISATION

- Applications Energy calculation, flows, grid
 - Energy Performance for Buildings Directive
 - Construction Product Directive
 - Energy Service Directive
 - National laws
 - CEN Energy Standards (require calculations), EU Directives
- Enabling framework and exchange platform INSPIRE Directive
 - Harmonized data, improved access, and data flow
- Databases
 - European (Eurostat, JRC) and national databases,
 - Climate data and regional parameters

INSPIRE Thematic Scope

Annex I

- 1. Coordinate reference systems
- 2. Geographical grid systems
- 3. Geographical names
- 4. Administrative units
- 5. Addresses
- 6. Cadastral parcels
- 7. Transport networks
- 8. Hydrography
- 9. Protected sites

Annex II

- 1. Elevation
- 2. Ortho-imagery
- 3. Land cover
- 4. Geology

Annex III

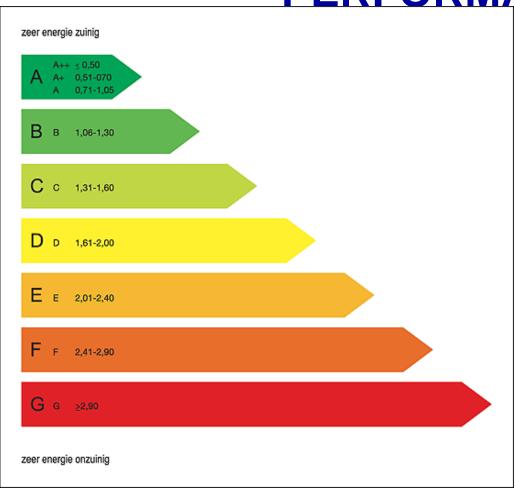
- 1. Statistical units
- 2. Buildings
- 3. Soil
- 4. Land use
- Human health and safety
- 6. Utility and governmental services
- 7. Environmental monitoring facilities
- 8. Production and industrial facilities
- 9. Agricultural and aquaculture facilities
- 10.Populationdistribution –demography

- 11. Area management/ restriction/regulation zones & reporting units
- 12. Natural risk zones
- 13. Atmospheric conditions
- Meteorological geographical features
- 15. Oceanographic geographical features
- 16. Sea regions
- 17. Bio-geographical regions
- Habitats and biotopes
- Species distribution
- 20. Energy Resources
- 21. Mineral resources

Research Centre

How INSPIRE is relevant for building energy assessment?

- One relevant theme: Building
- Current state of the data specifications:
 - Representations for buildings, building parts, openings, texture, etc.
 - 2D, 3D representations
 - Many thematic information, some may be relevant for building assessment (material of construction, etc.)
- INSPIRE could become a major data resource for building energy assessment


What is a BUILDING?

- A protected enclosure (space/volume) taking into account its boundaries; climate, energy infra-structure and functionality.
- Key element in the energy infra structure
- For energy assessment the envelope is the most important part. It separates indoor- (volume) from outdoor environment.
- In terms of energy consumption:
 - Building needs; minimum requirements
 - Operational needs; apparatus, etc.
 - Occupancy/functionality energy needs
- Note the different definitions; EPBD, CPD, INSPIRE, ...

PERFORMANCE

- Assessment should be as accurate as label-step
- Cost Optimal level per label
- Demolish/rebuild border-line
- Priority listing of Energy Efficient Measures
- Occupancy behaviour factor

Energy Performance of Buildings

Directive 2010/31/EU article 2:

The 'energy performance of a building' means the **calculated** or **measured** amount of energy needed to meet the energy demand associated with a typical use of the building, which includes, inter alia, energy used for heating, cooling, ventilation, hot water and lighting;

Energy Performance Assessment

Calculation and Measurement

Top - Down approach (empirical - databases, metering)

Building adn	ninistration, Location		
Energy performance and consumption related information			
Metering data (time series) energy performance, consumption assessment			
	Building performance assessment by measurement		
		Detailed calculation according to CEN standards	
			Simplified calculation

Bottom - Up approach (Calculation)

Top-Down and Bottom-Up levels

Energy Performance Assessment

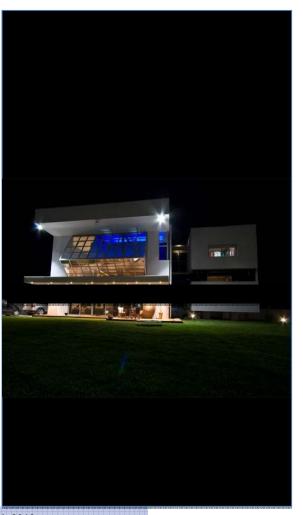
Classification of approaches

Approach 1: Simplified method based on administrative data

Approach 2 : Climate and consumer information included

Approach 3: Energy consumption and performance data

Approach 4: Building performance assessment based on measured data


Approach 5: Detailed calculation according standardized calculations

Approach 6: Simplified calculation method

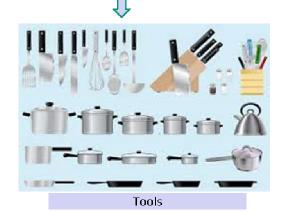
PHILOSOPHY

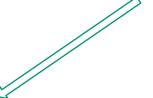
The philosophy, TRIAS ENERGETICA that supports the reduction of energy consumption in building sector is presented in three priority steps:

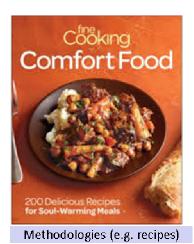
- Energy saving (improve insulation),
- Increase energy efficiency (building installations),
- 3. Use **renewable energy** resources (solar energy, bio-energy, etc.)

APPROACHES

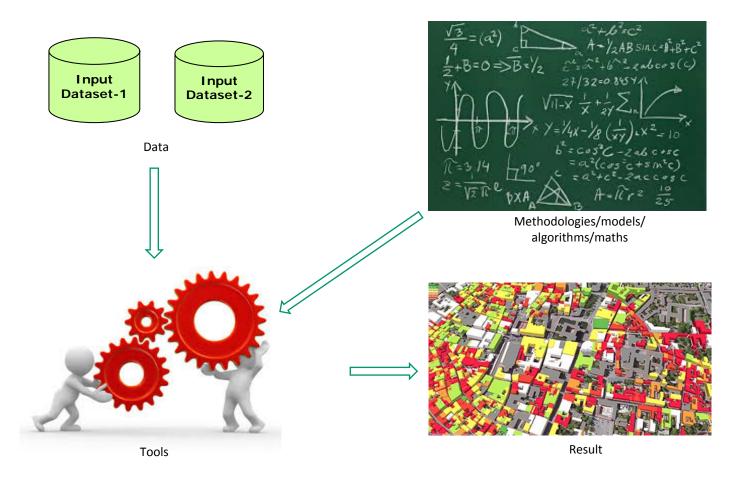
Data, Input


Methodology


Tools


Result, Output

Required ingredients



Result

APPROACHES

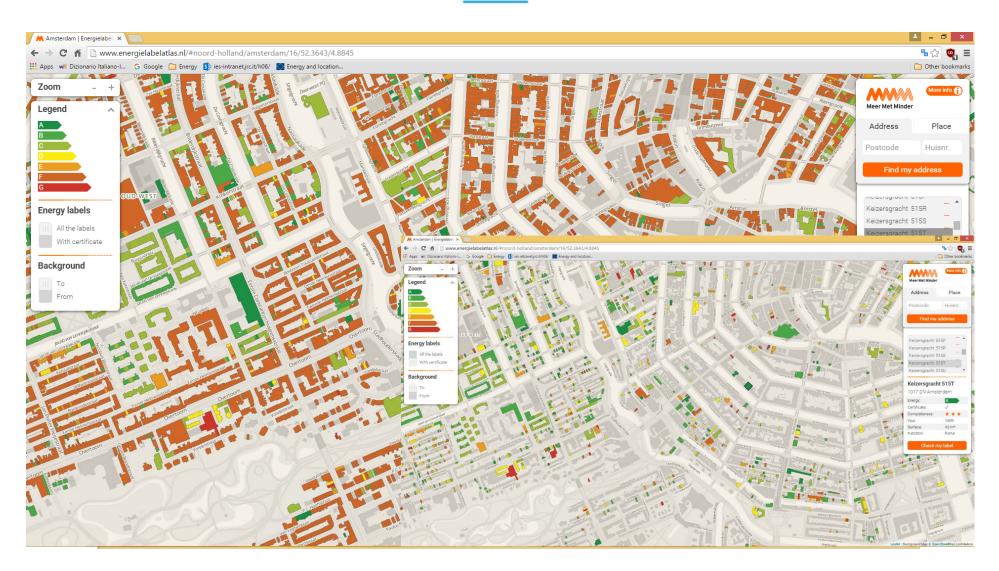
1. Simplified method based on administrative data

Holistic assessment

Based on building administrative data like,

year of construction,

type of building,


size (surface area or floor area),

geo-location.

Cross-reference listing of "known" buildings

2. Climate and consumer information included

Extension of approach 1 but for which additional data is coming from climate and end-user feedback.

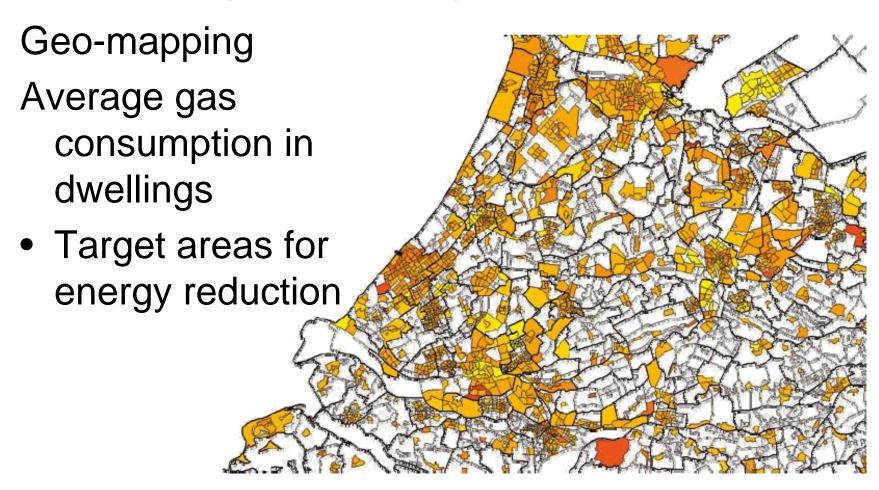
End-user information may be linked to annual energy billing for a correlation indicator of in- and outdoor climate.

Geo-location data may be used for selection of energy resources (renewables) or energy infrastructure and providers



INSPIRE and Energy & Buildings

Cadaster
Administrative
information on
building stock


- Age, type, location, construction, usage
- Energy, systems,
- Family Composition

Energy, Buildings and Location

URBAN DIMENSION

3. Energy consumption and performance data

Further extension of approach 2

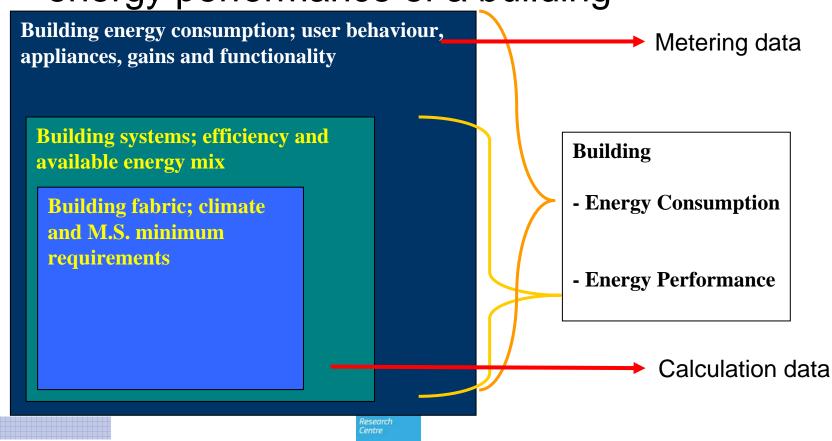
Metering data (daily or even hourly interval)

A combined statistical and analysis method might be applied to distinguish

- building energy needs (real climate and building fabric related) from
- end-user energy consumption (behavioural aspect).

Calculation techniques are dynamic

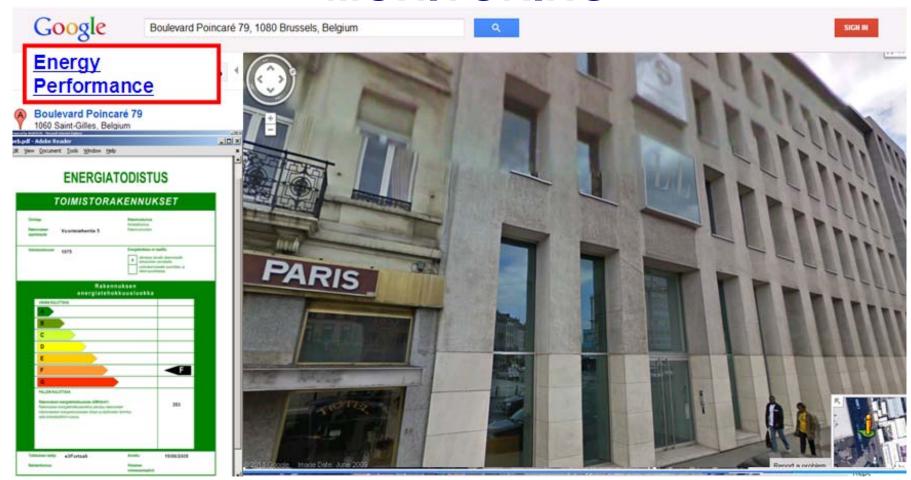
Optimise energy demand to climate as well as user behaviour.


E&L March 2016

ENERGY AND BUILDINGS

Relation of energy consumption and energy performance of a building

F&I March 2016


Buildings and Energy

- Needs building fabric (Performance)
 - Quality issue; speed/time; CO2/m3 or kWh/m2
- Systems building systems Efficiency
 - Unit-less expression (%, rendement, COP)
- Occupants energy Consumption
 - Control, appliances, family composition; MWh
- EPB defined energy usage:
 - Heating, Cooling, Ventilation, Hot Water, Light
 - Expressions of performance: kWh, CO2, ...

MONITORING

PROPOSED METHODOLOGY

- Use metering data (electricity, gas, water, ...)
- Split building related energy use from occupant energy consumption
 - EPB energy use; heating, cooling, ventilation, DHW and light
 - Non-EPB energy use; appliances, gains, behaviour
- Combine statistical and dynamic methods
 - Time series analysis

E&L March 2016

Hidden Markov Modelling

Toon

METERING

Metering for billing

- "smart- meters" for more frequent readings
- serves the provider in particular electricity
 For optimising energy balance
- Water, gas, district-heat, electricity

Towards intelligent environments Provider(s), ESCO, in the building

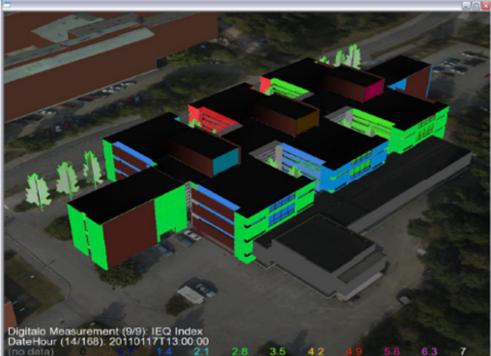
4. Building performance assessment based on measured data

In-situ measurement by means of co-heating.

The important energy flows, e.g. thermal transfer through the envelop and by an air tightness measurement.

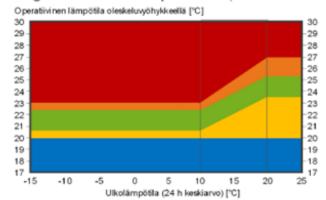
Measurements by infra-red camera observations or other specific measurements.

Obtained information is site and local weather conditions correlated and require a proper conversion to obtain energy performance value



DESIGN and REAL PERFORMANCE

Simulation software coupled to real data


Comfortable room temperature = green; red = too hot, blue = too cold

IEQ index (temperature/CO₂/etc.)

Target values of temperature (FiSIAQ Cat S2)

BUILDING SIMULATION

5. Detailed calculation according standardized calculations

Detailed calculation rules for the building.

Requires hourly or monthly data for the assessment.

F&I March 2016

These calculation rules are described in standards, CEN or national standards.

Dynamic calculation assessment takes into account variable climate data as well as thermal mass of the building.

Reference is made to the Overarching standard EN 15603 and the technical report EN 15615

BRIDGING the GAP

EPBD related energy standards

The GAP; which GAP

Calculation (design of buildings)

Measurement (measurement of consumption)

Standards

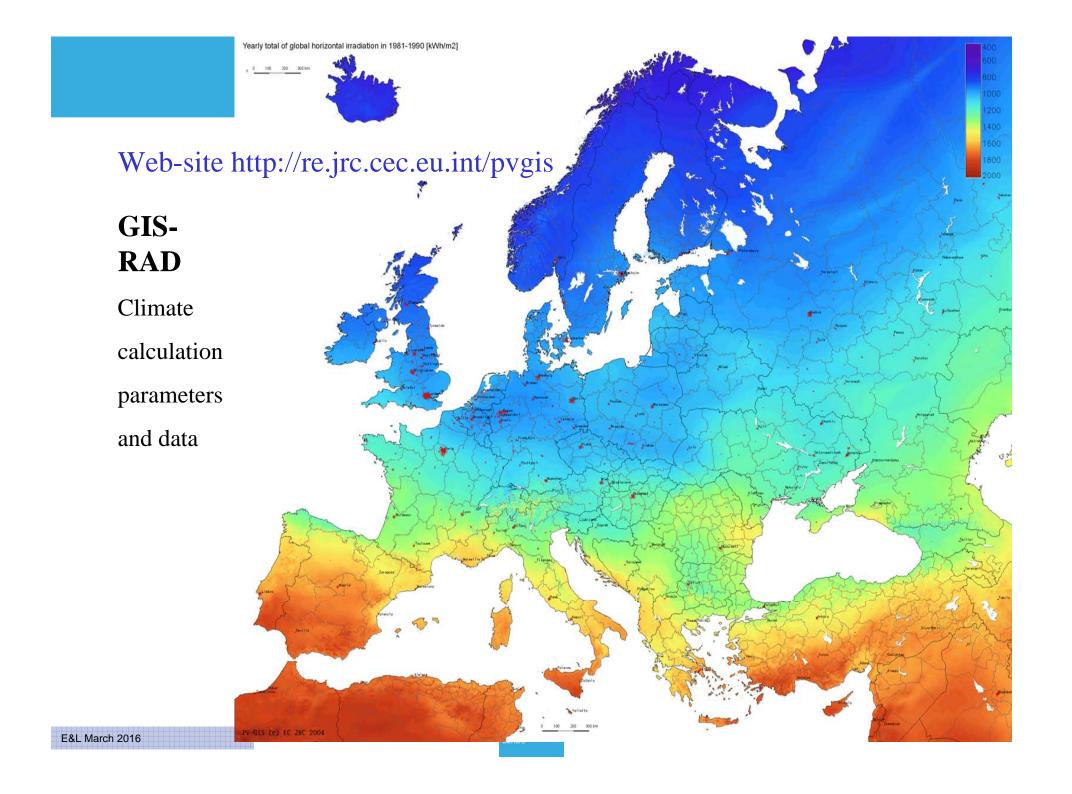
- TC371 Energy Performance of Buildings
- TC89 Thermal Performance of Buildings and Building Components
- TC's related to EPBD (ventilation, light, ...)

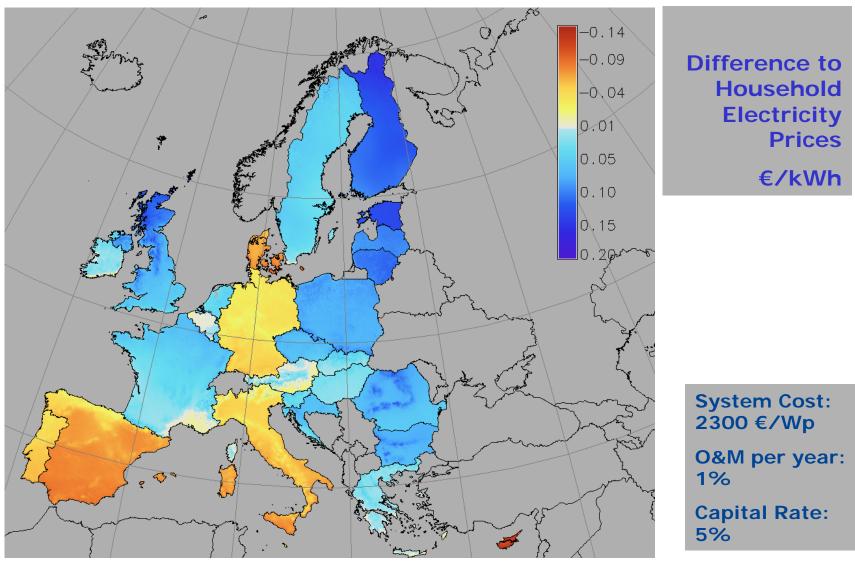
6. Simplified calculation method

Based on annual data;

The physical building is simplified to its volume and to the climate exposed envelop area. Climate data can be simplified to annual HDD (older buildings).

A more detailed assessment can be made based on monthly climate data and details of the envelop, such as window area, orientation to include impact of solar radiation and ventilation for air quality requirements.


Impact of thermal mass may be taken into account


BUILDINGS, CLIMATE, RESOURCES

Households 2.5<Consumption<5MWh/y, 2nd semester 2011. Sources: European Commission Market Observatory for Energy; JRC PV-GIS

Six Use Cases

WORKSHOP

- Use Case 1 INSPIRE Harmonization of existing Energy
 Performance Certificate datasets and creation of a
 web application for accessing them
- Use Case 2 Implementing different buildings' Energy
 Performance Labelling, including crowd sourcing
 data
- Use Case 3 Energy Performance of buildings with **dynamic** measured data
- Use Case 4 To support buildings' energy efficiency driven refurbishment planning at local level
- Use Case 5 To support integrated energy planning and monitoring at urban/local level (SEAP BEI/ME
- Use Case 6 Support the design and implementation of a **regional** energy strategy

