

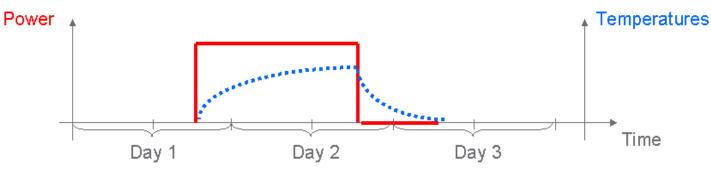
Rapid Building Thermal Diagnosis: Presentation of the QUB Method

Guillaume Pandraud, Saint-Gobain ISOVER February 6th, 2014

Didier Gossard (SGI) - Florent Alzetto (SGR)

Summary

- 1. QUB methodology
- 2. Experimental setup
- 3. Validation procedure
- 4. Experimental results
- 5. Conclusion Perspectives

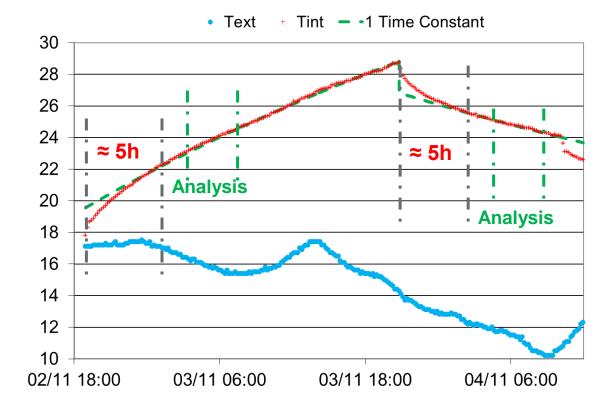


1. Methodology

- Objectives
 - "Fast estimation" of the quality of the envelope
 - Fast = Less than 3 days of total experimental time
 - Estimation = Accepted uncertainty of ± 15 %
- Quantitative result: heat loss coefficient K (W/K) (same as in co-heating)

QUB (Quick U-Value of Buildings): patented dynamic method

- Building is heated for a few hours, then cooled for a few hours
- K function of temperatures, temperature slopes and powers (1 equation)
- Total time for real houses: about 48 hours, including setting up and cleaning



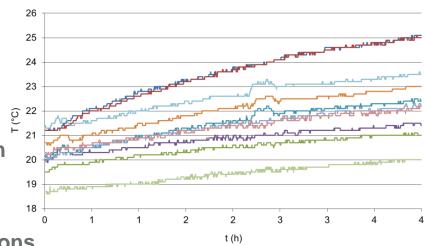
1. Methodology

Main hypothesis

- After a few hours, the temperatures vary as if the building only had 1 time constant
- If true, temperatures follow a single exponential function of t (variables: K and C)
- \rightarrow CdT = (P K Δ T) can be applied for both heating and cooling periods
- Direct consequence: $K = (T'_1P_2 T'_2P_1) / (T'_1\Delta T_2 T'_2\Delta T_1)$

2. Experimental setup

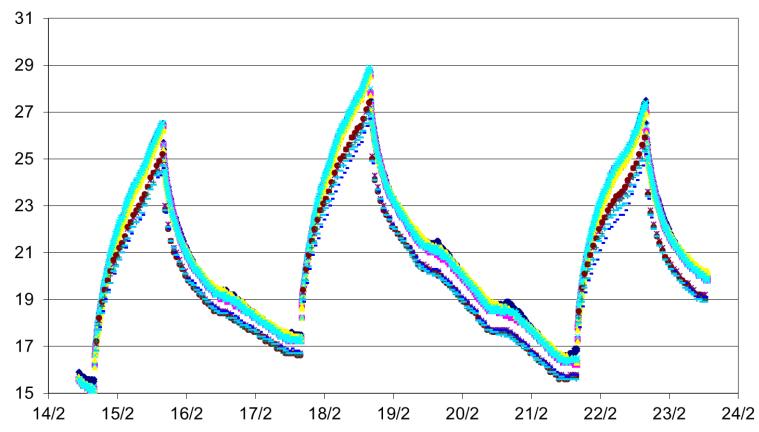
- Knowledge of the inputs
 - Temperatures inside and outside the house: easy
 - Power: more difficult
- Measurement of electric heating
 - Possible with other source of power, but less accurate (conversion factors)
 - Estimations with nominal consumption of sources can have a large uncertainty
 - Network tension is ± 10% → Measurement of I and U is needed


Reduction of unknown power sources

- Only the night periods are used for analysis
- Empty building
- Measurement of all electricity sources that cannot be stopped (e.g. fridge)
- Ventilation: air vents closed (as in an air pressurization test)

2. Experimental setup

- Dynamic method
 - Constant powers, no temperature regulation
 - → High temperature differences possible
 - Temperatures have to be averaged
 - Can lead to errors due to the sensors positions
- Solution: homogeneous heating
 - Sometimes possible: homogeneous volume (HVAC) or surface (underfloor) heating
 - Easier: high number of low power sources
 - Low radiation to heat the air rather than the walls
 - Conductive heating to keep internal convection low
- ➤ SG solution: heating mats, placed vertically
 - Led to significant improvement of method reliability and reproducibility

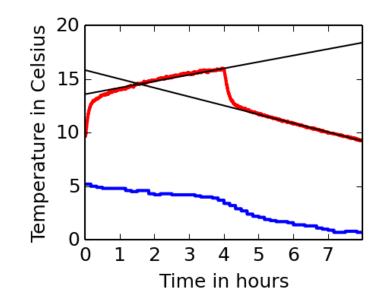


2. Experimental setup

- Example of homogeneity with vertical mats
 - 3 tests over 10 days
 - 9 temperatures over 2 floors

3. Validation procedure

- > Principle
 - Comparison of result with a <u>reference</u> value
 - Must be based on <u>actual in situ</u> performance
 - Not estimated or calculated
 - Not occupant-dependent
 - Difficulties to get reference value in a standard building: requires specific measurements and no occupation
- ➤ 2 validation methods used
 - "Standard" buildings: co-heating tests
 - Saint-Gobain bungalows
 - "Specific" buildings: steady-state conditions (all variables are stabilized)
 - Numerical validation with TRNSYS: all QUB results have an error < 15%</p>
 - Energy House, University of Salford

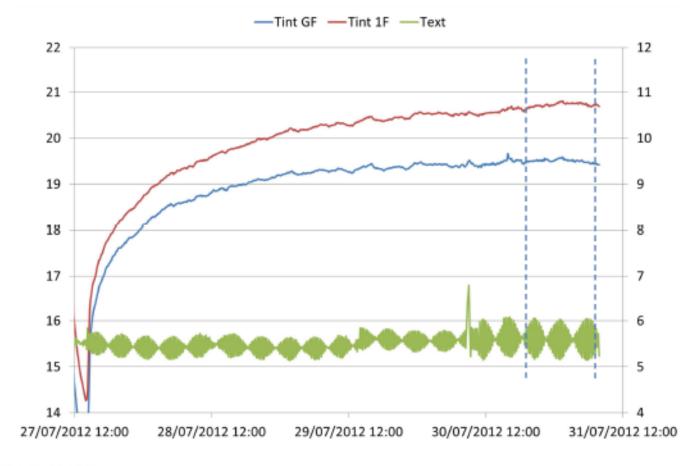

- Saint-Gobain bungalows
 - Situated near Paris, FR
 - Reference: 2 x 2 weeks co-heating at 2 T_{int}
 - K_{25 °C} = (34.6 ± 6.6) W/K
 - K_{35 °C} = (29.3 ± 5.2) W/K
 - Difference can be explained by very variable wind speed
 - Average (at 4 m/s): K_{ref} = 32.7 ± 0.9 W/K

QUB tests

- Very light building → tests in one night
 - 4 h heating 4 h cooling
- 25 tests done
- Reproducibility: $K_{QUB} = (32.7 \pm 2.6) W/K$
- Extremes: 28.5 W/K < K_{QUB} < 38.5 W/K
- Comparison shows very close results and no real outliers

The Energy House, University of Salford

- Typical 1910 terraced property from the UK
 - But which has been through reasonable modifications
- In a well insulated concrete chamber
- Built on a solid concrete base
- Chamber cooled by condenser units
 - Heating provided by a heat pump
 - Controlled with a 0.5 °C accuracy
 - Temperature ranges from -14 °C to 30 °C
- Possibility to reach steady-state
 - Stable temperatures and fluxes
 - Perfect reference
 - Only such place in the world we are aware of



Example of a steady-state test

>

Comparison of QUB tests with reference

2 cases: with and without insulation in the attic, over the ceiling

Case	No roof insulation		Insulated roof
Test Number	1	2	3
Steady-state (W/K)	262.7		215.4
QUB (W/K)	274.5	263.8	229.8

Maximum difference between QUB and steady-state values: 7%

► Influence of other parameters checked experimentally and numerically

- Insulation level
 - Results OK in non-insulated to quasi passive houses
- Climatic conditions
 - Linked to reproducibility: usually about ± 10%
 - Houses with lower insulation / higher infiltrations are more sensitive to climatic conditions
- Seasonal influence
 - Low difference between summer and winter results
- Type of wall structure
 - QUB can be applied on external and internal insulations, although more easily with internal
- Infiltration / ventilation rate
 - QUB measurement is an accurate estimation of TOTAL losses (infiltration + transmission)
 - By itself, it cannot differentiate these two types of losses
 - If only transmission losses are wanted, <u>separate</u> estimation of infiltration losses are necessary

5. Conclusion - Perspectives

> QUB method: fast and reliable building energy diagnosis method

- Experimental setup and data processing are very easy
- Requires specific material to be done in an optimal way
- Gives the value of the total heat losses (infiltration + transmission)
- Patented by Saint-Gobain Isover
- Method validated in very different conditions
- ► Next steps
 - Method acceleration
 - Tests in one night only are possible
 - Results as good as two night results, but with more experimental constraints
 - Validation process is almost finished
 - Use on collective housing
 - Adaptation should be possible, best experimental method not determined yet
 - Lack of experimental reference cases

Rapid Building Thermal Diagnosis: Presentation of the QUB Method

Guillaume Pandraud, Saint-Gobain ISOVER February 6th, 2014

Didier Gossard (SGI) - Florent Alzetto (SGR)

