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Summary

This document presents guidelines for using time series analysis methods, mod-
els and tools for estimating the thermal performance of buildings and building
components. The thermal performance is measured as estimated parameters of
a model, or parameters derived from estimated parameters of a model. A special
focus will be on estimating the Heat Transfer Coefficient (HTC) and gA-value. Pro-
vided in the guidelines are modelling procedures with which consistent results for
estimation of energy performance of buildings and building components can be
achieved.

These guidelines start with simple (non-dynamical) steady state models where the
parameters are found using classical methods for linear regression. Such steady
state techniques provide sub-optimal use of the information embedded in the data
and provides information only about the HTC and gA-values.

Next the guidelines consider dynamical models. Firstly, linear input-output mod-
els are considered. More specifically we will consider the class of AutoRegressive
with eXogenous input (ARX) models. These models provides information about
the HTC and gA-values, and information about the dynamics (most frequently
described as time-constants for the system).

Finally, grey-box models are considered. This class of models is formulated as
state space models which are able to provide rather detailed information about
the internal physical parameters of a construction. Grey-box models bridges the
gap between physical and statistical modelling. A grey-box model is formulated
as a continuous time model for the states of the system, together with a discrete
set of equations describing how the measurements are linked to the states. The
frequently used so-called RC-network models belongs to the class of linear grey-
box models. However, advanced constructions, like a wall with PV-integration or
a complex building with a lot of glass, often calls for a description of non-linear
phenomena. This can be facilitated by the class of non-linear grey-box models.

It is assumed that data is available as time series of measurements. Hence it should
be noticed that the important steps of experimental design and setting up the ex-
periment have been conducted.
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Introduction

The goal of these guidelines is to describe modelling procedures with which an
experienced or trained user can obtain consistent results by using the dynamical
approaches for estimation of building energy performance. The document is for-
mulated as a part of IEA EBC Annex 58.

Required basic knowledge

Please note, that these guidelines requires some level of statistical knowl-
edge. Apart from basic statistical terms (e.g. normal distribution, confidence
interval, p-value) the reader is also required to be familiar with basic con-
cepts from time series analysis (e.g. autocorrelation function, autoregressive
models, transfer function, white noise). The concepts needed are introduced
in the book on time series analysis by Madsen (2008), which also is referenced
to where appropriate. The notation used is also aligned with (Madsen, 2008).
However, numerous books provide an introduction to most of the concepts
needed. A few other examples are (Box and Jenkins, 1970/1976), (Chatfield,
2003) and (Harvey, 1990).
In Appendix A a short introduction to the time series models used in the
guidelines is provided. The introduction focuses on the context of thermal
performance of buildings , hence if the reader needs an overview of time
series models it can be a good idea to read, as well as Appendix A in which
an introduction to the applied grey-box models is provided.

This version of the guidelines will be rather strict and focus on the RRTB and the
IDEE (Jiménez and et al., 2015) experiments. However, we aim at providing a set
of guidelines such that they ultimately can be used for different types of dynam-
ical tests for estimating the thermal performance of many types of buildings and
building components. We shall assume that data is available as time series of mea-
surements obtained in dynamical test conditions. Consequently the methods can
be used for outdoor testing, and ultimately for occupied buildings.

Traditionally, the so-called steady state (ISO 9251:1987) methods have been used
(ISO 9869-1:2014). These methods assume that the considered system is in steady
state, and consequently that the variables are constant in time. Obviously methods
relying on steady state analysis are less suitable for outdoor and real life testing.
Consequently, we shall focus on time series originating from dynamical testing
where e.g. the input variables are varied (excited) such that also the dynamical
proporties of the component or building can be identified.
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The thermal performance is obtained based on estimated parameters of a model.
A special focus will be on the HTC and gA-value, which, by using the proposed
techniques, can be estimated also in dynamical and real life conditions. Further-
more, the dynamical procedures will lead to more efficient use of the data, and
typically the experimental time for obtaining a certain accuracy of e.g. the HTC is
an order of magniture smaller for dynamical test procedures than for steady state
procedures.

The guidelines assume that data is available as time series of measurements; i.e. the
important steps of experimental design, setup and conduction have been carried
out. The purpose of these guidelines is to describe successive steps for prepro-
cessing the data, model selection or formulation, parameter estimation, and model
validation. In practice this implies that we might end up concluding that new
experiments are needed in order to achive the wanted results.

Notice that e.g. the definition of an HTC relies on an assumption of steady state,
and some of the classical used terms for characterizing the thermal performance
of buildings and building components might need to be reformulated. Hence for
more complicated building components or more advanced studies the fundamen-
tal equations for heat conduction, convection and radiative transfer must be con-
sidered.

In some cases it is important to be able to describe non-linear phenomena like
the heat transfer by radiation, wind speed driven convection, influence of so-
lar radiation, etc. Likewise it is sometimes essential to be able to describe time-
varying/non-stationary phenomena like changes caused by a varying amount of
moisture in a wall.

It must be emphasized that parameters are related to a model. This also implies
that simple models (like linear regression models) only provide rather limited in-
formation about the thermal characteristics, and, as the other extreme, the grey-box
models typically contain a lot of information about the internal physical parame-
ters of the system.

Terms like linearity and stationarity will be used. The reason being that if the
model can be considered both stationary and linear, then more simple approaches,
like those related to ARX models, can be used, whereas, on the other hand, grey-
box models are able to describe both non-linear and non-stationary systems.

First, however, the guidelines will start with some sections describing the initial
model formulation and the pre-processing of the data. These sections are common
for all models, more details regarding these issues are presented by Jiménez and
et al. (2015). Subsequently guidelines related to a number of different models will
be described. We shall consider the following models

• The linear regression model (non-dynamical/steady state approach).

• The linear dynamic (ARX) model (dynamical, linear, and stationary ap-
proach).

• The grey-box model (dynamical, linear or non-linear, stationary or non-
stationary (time-varying) approach).

7



As indicated, these guidelines start with simple (non-dynamical) steady state mod-
els where the parameters are found using classical methods for linear regression.
Such steady state techniques provide sub-optimal use of the information embed-
ded in the data and provides information only about the HTC and gA-values. The
concepts of linear regression are described in detail in Chapter 3 of (Madsen, 2008).

Next the guidelines consider dynamical models. Firstly, linear input-output mod-
els are considered; see Chapter 8 in (Madsen, 2008) further details about univariate
input-output models and Chapter 9 for multivariate input-output models. More
specifically we will here consider the class of ARX models. These models provide
information about the HTC and gA-values as well as crude information about the
dynamics (most frequently described as time-constants for the system). The linear
input-output models are often labelled as an external model since they describe
only the relation between the input and output signal (and not the details of the
physical processes).

Finally, grey-box models are considered. This class of models bridges the gap
between physical and statistical modelling. The grey-box models’ main strength
is their ability to couple detailed physical models to data and thereby providing
an insight into the detailed physics and dynamics of the building. A grey-box
model consists of a continuous time model for the states of the system, together
with a discrete set of equations describing how the measurements are linked to the
states. This is often called a continuous-discrete time state space model; see Chap-
ter 10 in (Madsen, 2008) for further details about state space models. The continu-
ous time formulation of the dynamics ensures that prior physical known relations,
which typically are given as differential equations, can be used as a part of the
model formulation. This class of models are often labelled as an internal model
since they provide a possibility for describing the internal physical processes.

Most often the so-called RC-network models are considered for buildings. These
models belong to the class of linear grey-box models, which is the classical dynam-
ical model most frequently used for buildings and building components. However,
modern buildings (e.g. buildings with a lot of glass or natural ventilation) and ad-
vanced walls (e.g. walls with PV-integrated panels) contains non-linear phenom-
ena like those related to radiative heat transfer, free convection, etc. For such more
complicated phenomena the class of non-linear grey-box models must be consid-
ered.

These guidelines also includes a series of appendices. Appendix A very shortly
introduces statistical time series models. Appendix B describes the physical ar-
guments for using stochastic model formulations. Furthermore, the relationship
between the models is outlined in Appendix C. A special attention is put on how
the noise enters the models, and the relation between parameters in the various
models. For the state space models both continuous and discrete time versions
of the models are considered. Finally, some detailed calculations are described in
Appendix D, and in the last two Appendices examples of how the guidelines can
be applied are presented.

Most of the methods and models were initially developed during a number of
European Research projects focusing on outdoor testing under real weather con-
ditions; the first being the PASSYS project (Cools and Gicquel, 1989), which is
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also inspired by the early work by Sonderegger (1978). Some of the approaches
have been further developed and presented in (Madsen and Schultz, 1993), (Bloem,
1994), (Madsen and Holst, 1995), (Andersen et al., 2000), (Bloem, 2007), (Jiménez
and Madsen, 2008), (Jiménez et al., 2008a), (Jiménez et al., 2008b) and (Bacher and
Madsen, 2011).
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Data description

The data and notation symbols must be described and defined. It is here recom-
mended to follow a current ISO standard related to energy in buildings, in this
document the notation follows EN ISO 13790:2008 Energy performance of build-
ings - Calculation of energy use for space heating and cooling.

The variables and their units must be specified, as well as how they were measured
and sampled. Preferably a list of the variables is provided, with their: symbols,
units, sampling resolution (e.g. number of digits) and sampling time, as well as a
short description of each including potential preprocessing.

A description of the experimental setup, e.g. measuring equipment such as sen-
sors, setup, and measuring period, should preferably be another document, which
is written before the experiments are carried out. Well documented data set must
include any other relevant information regarding experiment conduction and ob-
servations posterior to the experiments.

Furthermore, it is to notice the units, and ensure that the signals are measured
using directly related physical units.

Finally, some signals appears as a cumulated signal, and the original signal must
then be found using an appropriate difference operator.

The data description is an important interface between the experimental design
and conduction phase, presented in the physical guidelines and the modelling
guidelines presented in this document.

10



Statistical descriptive analysis and pre-
processing of the data

This analysis is common for all methods, and consists of the following elements:

• Plot the data as a function of time on 2 to 3 different zoom levels (e.g. the
entire period and a couple of days).

• Check the data for outliers, missing data and other irregularities. Here basic
time series plots and e.g. box-plots are useful tools, see (Brockhoff et al., 2015)
and Madsen (2008) for more details.

• Calculate averages and quantiles for the data. For example it might be useful
to calculate the average and quantiles for e.g. each hour in the diurnal cycle,
each month in the anual cycle, etc.

These steps may point out unusual phenomena, which could potentially give rise
to difficulties in the subsequent modelling. The issues are often introduced either
in the experiment setup, the measuring equipment, or the data handling.

Particular aspects to be aware of

Often encountered phenomena found in data which can introduce problems such
as non-linearities and outliers in the modelling and estimation step:

• Experimental setup:

– Overheating in thermostatic controlled experiments. In experiments
where the internal temperature is thermostatic controlled, hence should
be constant, overheating resulting in increased temperature can occur,
in which case the thermostatic control sets the heating to zero leading to
non-linearity. This is mostly caused by too high level of solar radiation
entering the building. Overheating can result in biased and increased
uncertainty of the estimates.

– Solar radiation striking directly on the temperature sensors.
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– Shadowing on solar radiation sensors from surrounding buildings, trees,
poles, etc. Especially a problem in the early and late hours of the day
when the sun elevation is low.

• Measuring equipment:

– Saturation or clipping in the sensor or sensor electronics.

– Low resolution. The required resolution will always be relative to the
experiment, sampling time resolution etc.

– Too sparse sampling time can give rise to inaccurate sampling. One
particular example is when a flow (e.g. the heating power) is measured
as point values at a too low sampling time resolution, where it would
be more accurate to measure the accumulated flow, i.e. with a energy
meter, such that the averaged flow values are obtained.

• Data preprocessing:

– Time synchronization can be an issue if multiple acquisition systems
have been used during the experiment.

– Time zone needs to be checked when external data and derived quanti-
ties are used in the data analysis. For example when positions of the sun
are derived and used in the models. Plotting measured solar radiation
together with the calculated sun elevation can easily reveal synchroniza-
tion errors.

– Averaging a signal with high frequency content like a Pseudo Random
Binary Sequence (PRBS) signal must be done carrefully. If the averag-
ing contains averages over a period including signals with both low and
high values, this often creates problems (e.g. large residuals) in the sub-
sequent modelling. Try to perform the averaging such that it dooes not
contain mixtures of high and low values, but syncronized such that only
either low or high values are forming the averages.

Averaging and filtering

If the data is downsampled by filtering or averaging (e.g. by averaging to a longer
sampling period), then it is important that the same method (e.g. filter) is used for
all the signals. Alternatively, the input-output model found will be corrupted by
the difference in the filters used for the various signals.

Aliasing

It must also be noticed that downsampling - and to some degree also averaging -
can lead to the so-called aliasing problem, which arises from the fact that a signi-
ficiant variation at a high frequency in the original signal will appear as a faulty
significiant variation at a lower frequency if the aliasing problem or sampling is
not treated carefully, see (Madsen, 2008) p. 78-80 for further details.
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Models for estimation of building ther-
mal performance parameters

This is the main chapter of the document and describes various models and the
model specific guidelines.

Steady state models

This class of models is useful for describring linear and stationary steady state (i.e.
non-dynamical) relations between input and output time series of data. However,
in some cases a non-linear dependency of input data can be described simply by a
non-linear transformation of the data.

Since this class of models does not offer a dynamical description the time series
data must be downsampled by averaging over a longer sample period. The length
of this time period must be so large that the values of the autocorrelation of the
residuals is basically zero (use the standard white noise test, e.g. the test in the
autocorrelation function, found in (Madsen, 2008) page 175).

Linear steady state models

Based on the steady state energy balance, linear static models are formulated. Such
models can be applied to estimate thermal performance of a building in different
settings. Note that in this simple setup the effect of wind is not taken into account.

As a starting point for the models consider the steady state energy balance

Φh = Htot(Ti − Te)− gAsol Isol (4.1)

where the output and inputs of the model are:

• Φh Heating power of the heating system (plus other sources: electrical appli-
ances, etc.) inside the building (W)

• Ti Internal air temperature (◦C) (in text simply ’internal temperature’)

• Te External air temperature (◦C) (in text simply ’external temperature’)

13



• Isol Solar irradiation received by the building (W m−2)

the parameters of the model are

• Htot the overall heat transfer coefficient (HTC). This is thus a measure which
include both the transmission heat transfer and ventilation heat transfer, hence
a sum of the UA-value (W/K) and ventilation losses.

• gAsol is a parameter which is the product of: g solar transmittance of the
transparent elements and Asol the effective collecting area (solar aperture)
(m2)

The symbols and definitions are taken as much as possible from the ISO 13790
standard, see the nomenclature in the end of the document, which the symbols are
linked to (click the symbol to take the link and depending on the editor go back by
”Alt-Left”).

For this guideline the observations are time series, which implies that an index t
will be introduced in the following to denote time. For that reason we shall use
a slightly different notation in what follows.

The observations will be denoted as time series: Φh
t , Ti

t , Te
t and Isol

t (i.e. Φh
t is the

observation of heating power at time t). When average values are used then the
time point t is set to the end of the averaging interval, e.g. for the average over the
hour from 10:00 to 11:00 the time point t is set to 11:00.

In order to formulate and estimate the thermal performance of a building based on
the energy balance above, the following steps should be followed:

1. Sampling time (used in the averaging). When applying a steady state model
the dynamical effects must be filtered out by low pass filtering the time se-
ries; typically by averaging over periods with length of the sampling time. The
appropriate sampling time depends on how fast the system responds: for
standard insulated buildings one or two days averages are usually appro-
priate, whereas for high performance (very well insulated or heavy) build-
ings a higher sampling time can be needed. For smaller or very poorly insu-
lated buildings lower sampling time could be appropriate, e.g. for the RRTB
6 hour averages has proven to be a good choice (see Appendix G), how-
ever care should be taken due to the diurnal periodicity of the signals, espe-
cially the cross-correlation between the residuals and solar radiation should
be watched.

A procedure for selection of an appropriate sampling time is:

• Start with a short sampling time, which results in correlated (non-white
noise) residuals (as analysed in the model validation step below using
the AutoCorrelation Function (ACF), see also p. 31).

• Increase the sampling time until white noise residuals are obtained.

• Check that the cross-correlation to the inputs, especially to solar radia-
tion, is not significant.
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In this way a good balance between a too short sampling time: resulting in
biased estimates and too narrow Confidence Intervals (CIs) (correlated resid-
uals indicate too many observations compared to the available information
in data), and a too long sampling time: resulting in too wide CIs (too few
observations compared to the available information in data).

2. Model parametrization. In order to estimate the thermal performance the
energy balance above is used to parameterize a linear regression model

Φh
t = ωi Ti

t + ωe Te
t + ωsol Isol

t + εt, (4.2)

where the residual error εt is assumed to be i.i.d.1 random variables following
a normal distribution with mean zero and variance σ2, written as N(0, σ2). A
time series of such random variables is called a white noise signal. In (4.2) the
parameters which can be estimated represents:

• ωi: the HTC (i.e. Htot), which includes ventilation.

• ωe: the negative HTC (i.e. Htot), which includes ventilation. Note that
two estimates of the HTC is obtained and in order to find the best single
estimate a linear minimum variance weighting is used as described in
Appendix D.

• ωsol: a measure of the solar absorption of the building based on the
available measurements, usually global radiation (i.e. measured hori-
zontal radiation) or south-faced vertical radiation. Therefore, since the
incoming radiation onto the building is not equal to the available mea-
sured radiation, care must be taken when interpreting and comparing
the estimated value with the building solar absorption properties, i.e.
gAsol.

3. Model validation. The model must be validated using the techniques de-
scribed in Section 5.

4. Calculation of HTC and gA-values (simple setup). Based on the estimated
parameters in the model estimates of the HTC and the gA-value are calcu-
lated as described in details in Appendix D.1.1. To summarize, the following
steps for the HTC is carried out:

• The coefficients for the internal and external temperature

Hi = ωi, (4.3)
He = −ωe (4.4)

are both representing an estimate of the HTC.

• Make a linear weighting

Htot = λHi + (1− λ)He, (4.5)

to find the estimator for the HTC. The value of λ is found such that the
variance of Htot is minimized, see Appendix D for details.

• Calculate the estimated variance of the HTC denoted σ2
Htot

.

1i.i.d. means independently and identically distributed
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For this simple setup the gA-value is simply the estimated coefficient −ωsol
with standard deviation estimate σgAsol , which can be directly read from the
linear regression results. However it is again noted that this interpretation
should be considered in the light of which measurements was used to repre-
sent the incoming solar radiation.

Notice that it is very important to state both the estimates and the standard error
of the estimates, since without knowing the uncertainty of the estimates we
have serious issues in comparing the results with physical judged parame-
ters, other estimates, etc.

Linear dynamics input-output models (ARX models)

This class of models can be used for linear and stationary (e.g. not time-varying)
dynamical systems. Consequently, if it has been concluded that the system is ei-
ther non-linear or non-stationary, then typically the concept of grey-box models, as
described in Section 4.3, must be used. However, in some cases a non-linear trans-
formation of the input signals might be sufficient. Also if the data is sampled at
non-equidistant time intervals, then the continuous time grey-box models should
be used.

The most important difference from the steady-state models considered in the pre-
vious section is that now dynamical properties are described. Depending on the
application and the properties of the building (or building component) an appro-
priate sampling time range from, say, five minutes to an hour.

This class of models provides HTC and gA-values, and the time constants of the
system. We shall focus on ARX models, however, a close relation to e.g. ARMAX
and Box-Jenkins models exists - please see Appendix C. The models might be very
useful for forecasting and control.

Since only the input-output relations are described this model belongs to the class
of external models since they only provide information about the so-called exter-
nal relations between the input and output variables. They do not provide infor-
mation of the internal physical parameters like thermal resistances and heat ca-
pacities. If these parameters are essential then the grey-box approach should be
considered instead.

We will restrict our attention to multiple-input, single-output (MISO) models here,
but in Chapter 10 of (Madsen, 2008) this is generalized to multiple-input, multiple-
output (MIMO) models, which naturally extents to build a framework for handling
a wider range of applications.

In the following a set of guidelines related to estimating HTC and gA-values as
well as the time constants using ARX models are provided:

1. Sampling time. Since we will consider a dynamical model the selected sam-
pling time Ts should reflect the use of the model. In general it can be said that
faster dynamics are averaged out as the sampling time increase, hence the sampling
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period should be set depending on the required level of details. If the focus
is entirely on the HTC and gA-values, which are steady state related param-
eters, the sampling time could be relatively long, say: between 1 and 6 hours
for regular sized buildings, but could be even longer for very well insulated
buildings. For the RRTB a reasonable sampling time is around 1 hour or
shorter. If the focus is on control then an appropriate sampling time might be
shorter; depending on the importance of influences from e.g. solar radiation
and occupancy behavior.

From experience it is found that an appropriate sampling time, in the case
where only the steady state thermal performance is needed (i.e. HTC and
gA), is to select the sampling time such that a second order model is suitable.

2. Model parameterization (simple setup). Two simple model setups are in-
cluded here:

• Heating power as model output. Internal temperature, external temper-
ature and solar radiation as model inputs. This is the type of model,
which is suited for constant thermostatic controlled internal tempera-
ture experiments, where the heating power thus becomes the dependent
variable, similarly as for the steady state model presented in Section
4.1.1.

• Internal temperature as model output. External temperature, heating
power and solar radiation as model inputs. This is the type of model,
which is suited for controlled heating experiments (using a PRBS or
ROLBS sequence).

The symbols used for the variables are in both cases the same as explained
on page 14.

Heating power as model output. In this simple setup we will assume a pa-
rameterization using the following ARX model

φ(B)Φh
t = ωi(B)Ti

t + ωe(B)Te
t + ωsol(B)Isol

t + εt (4.6)

where φ(B) is an output (or AR) polynomial of order p in the backshift op-
erator B, and similarly the input polynomials ωi(B), ωe(B) and ωsol(B) are
polynomials of order si = 0 (explanation below), se and ssol. Appendix A
contains a short introduction to this notation, but for a further description
we refer to (Madsen, 2008).

Note that when the internal temperature is thermostatic controlled it must be
kept constant and if changed the transient periods must be removed, since
in these periods the linear ARX model with heating power as output is not
valid. Therefore, since the input is constant (hence the values of lagged sig-
nals are also constant) the order of the internal temperature polynomial is set
to zero (si = 0).

The inputs and output are derived similarly as for the steady state models
described in Section 4.1.1. However, it is very important to notice that for
ARX models a much lower sampling time is possible, and this implies that
the information in the data is used much better for ARX models than for the
steady state (linear regression) models.
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In the simple setup the orders of the input polynomials are set equal by
se = ssol = p − 1 and for the special case p = 0: si = se = ssol = p, i.e.
in the latter case a linear steady state model as defined in Eq. (4.2) is ob-
tained. Consequently, only a single parameter, namely p, needs to be set to
fix the model order. In a more advanced setup (see later on) we will allow for
different orders of the polynomials, but the above approach has proven to be
useful.

Internal temperature as model output. In this setup we will assume a pa-
rameterization using the following ARX model

φ(B)Ti
t = ωh(B)Φh

t + ωe(B)Te
t + ωsol(B)Isol

t + εt, (4.7)

where φ(B) is an output (or AR) polynomial of order p in the backshift op-
erator B, and similarly the input polynomials ωh(B), ωe(B) and ωsol(B) are
polynomials of order sh, se and ssol. In this simple setup we will assume that
the order of the input polynomials are sh = se = ssol = p− 1. Consequently,
only a single parameter, namely p, needs to be set to fix the model order. The
same considerations for advanced setup as the heating power setup above
should be taken into account.

3. Model order selection (simple setup). The model order p needs to be set
appropriately for a given set of data (based on a given sampling time. Please
notice that e.g. a lower sampling time (higher sampling rate) typically will
call for a higher model order).

(a) Set the model order to p = 0.

(b) Estimate the model parameters using for instance the lm() procedure in
R Core Team (2015).

(c) Evaluate for white noise residuals using the ACF and Partial AutoCor-
relation Function (PACF) functions (Madsen, 2008).

(d) If the ACF and PACF indicate that the residuals are still autocorrelated
then increase the model order by one, i.e. pnew = pold + 1 and goto (B).
If, on the other hand, the residuals can be assumed to be white noise the
model order is found to be p.

When the assumed conditions are met, i.e. when the model validation step
leads to the conclusion that the residuals are white noise, then we are ready
to calculate the thermal characteristics.

4. Model validation. The model must be validated using the techniques de-
scribed in Section 5. It is important to notice that if it is an experiment with
heat consumption as output and constant (controlled) indoor air tempera-
ture, then large residuals indicates overheating and the corresponding part of
the time series should be removed.

5. Calculation of HTC, gA-values and time constants (simple setup). Based
on the estimated parameters in the ARX model estimates of the HTC and the
gA-value are calculated, see the details in Appendix D.1.1.

The calculations differs between the two simple setups, however one impor-
tant point is emphasized here: Notice that it is very important to state both
the estimates and the standard error of the estimates, since without knowing the
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uncertainty of the estimates we have serious issues in comparing the results
with physical judged parameters, other estimates, etc.

Heating power as model output: Calculated similarly as for the linear
steady state model, described on page 15, except that the steady state gains
of the estimated transfer functions are used for the two HTC estimates, i.e.

Hi =
ωi(1)
φ(1)

, (4.8)

He =
−ωe(1)

φ(1)
. (4.9)

Similarly the estimate for the gA-value is the steady state gain from the radi-
ation input

gAsol =
ωsol(1)

φ(1)
, (4.10)

and its variance estimator σ2
gAsol

, see Appendix D.1.2 for a detailed descrip-
tion.

Internal temperature as model output: The calculation of the HTC and gA-
value is in this setup slightly different. Using the steady state gains of the
estimated transfer functions the HTC is found by

Htot =
1

ωh(1)
φ(1)

, (4.11)

and the gA-value by

gAsol =
ωsol(1)
ωh(1)

, (4.12)

see the details of how to calculate the HTC and the gA-value as well as esti-
mation of uncertainty in Section D.2.

Calculation of time constants: Finally, the time constants of the system can
be calculated by

τi = −∆tsmp
1

ln(pi)
, (4.13)

where pi is the i’th non-negative real pole in the transfer function, found as
the roots in the characteristic equation, see page 122 in (Madsen, 2008). ∆tsmp
is the sampling time. Furthermore, the step response to each input can be
calculated, simply by simulation of the output when applying a step in each
input.

6. Model selection (advanced setup).

There exists, of course, several possibilities for a more advanced model. Here
we shall only briefly mention these possibilities, and provide references for
further guidance or reading.

Possibilites for an advanced setup:
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• Separate model orders. In time series analysis various methods exists
for determining different model orders for the individual polynomials
– see (Madsen, 2008) Chapter 8. It might be crucial to consider such
alternative methods for model order selection; one example is in the
case of a time-delay between input and output variables.

• Moving Average terms. We could extend the model with a Moving
Average (MA) term, i.e. include historical values of the residuals. In-
cluding an MA term in the model can take into account systematic er-
rors, for example originating from deviations in inputs or in the model,
which result in correlated errors. Procedures for this is also described in
(Madsen, 2008).

• Additional input variables. There are several possible candidates for
additional input variables like the long wave radiation, wind speed,
wind speed multiplied with temperature differences, precipitation, trans-
formed input variables (like T4 for radiative transfer - or other transfor-
mation for free convective transfer).
Cross-correlation functions between the residuals and various candidate
input variables are useful for identifying important extra input vari-
ables. Methods like pre-whitening and ridge regression should be con-
sidered here; see e.g. (Madsen, 2008) page. 224-228.

• Transformation of solar radiation and semi-parametric models. mod-
elling of the solar radiation effect in the simple setup can often be im-
proved. The gA-value is not constant but rather a function (gA-curve)
of the sun position, which can be parameterized by the sun elevation
and azimuth angles or for shorter periods simply by the time of day in
combination with transformation of solar radiation. Several aspects can
be taken into account for advanced solar radiation modelling:

– Schemes for splitting the total solar radiation into direct and diffuse
radiation.

– Transformation of the radiation onto the plane normal to the direct
solar radiation.

– Transformation of the radiation onto the surfaces of the building.
This requires knowledge about the building layout and construc-
tion.

– Semi-parametric models in which the gA-curve are modelled by a
spline function. With such models for example a gA-curve as a func-
tion of the time of day can be estimated without any knowledge
about the building.

Grey-box models

Grey-box models are useful for identifying the internal dynamical characteristics
of buildings or building components. The concept belongs to the class of internal
models, which contains a description of the internal physical parameterization of
the model. This implies that the parameters in most cases have a direct physical in-
terpretation, which enables a possibility for using any prior physical knowledge of
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parameters or model structure. Obviously this class of models will provide much
more information about the system than the previously considered input-output
(transfer function or external) models. However, if the purpose of an experiment
and the subsequent modelling is to provide only the stationary parameters, for in-
stance the HTC, then it might be overkill to consider the grey-box models over the
input-output models.

Compared to the previously considered model classes grey-box models can de-
scribe rather complex phenomena and data structures. As an important example
grey-box models facilitates a possibility of describing both non-linear and non-
stationary systems. For buildings the effect of wind speed (and other sources of
convective heat transfer) typically gives rise to the need for non-linear compo-
nents, and varying moisture in the construction may give rise to a change in time
of the ’thermal mass’ and hence a need for being able to describe (or track) the
changing features of the systems. These are only one example of each of these
more complex phenomena that often is seen for newer buildings, complex walls,
and advanced glazing. As an example models for green houses calls for a descrip-
tion of the moisture as a part of the models, and hence these models often becomes
rather complex, see e.g. (Nielsen and Madsen, 1995) and (Nielsen and Madsen,
1998).

Since grey-box models are formulated in continuous time the data sampling time
can be non-equidistant. In the design of a test it is actually advantageous to vary
the sampling time during the experiment.

For stiff systems (systems which have both fast and slow dynamic responses), like
most buildings, it will be advantageous to vary both the excitation of the system
and the sampling time such that some periods zoom in on the low frequency part
of the model and other periods zoom in on the high frequency parts - see (Sadegh
et al., 1995).

Introduction

The concept of grey-box models is introduced in more detail in Appendix B, and
we shall here assume that the concept is known to the reader. In particular we
will not focus on the noise or the stochastic formulation in these conceptual part of
the guidelines, but for advanced modelling this stochastic part of the model may
become essential. For a more elaborated description of grey-box models and the
related modelling concept we refer to (Madsen et al., 2007).

Most importantly grey-box models are continuous-discrete time state-space mod-
els, where the dynamics of all the states of the system are described in continuous
time by a set of (stochastic) differential equations. These models also describe how
the observations, which are given as time series (i.e. in discrete time), are linked
to the states of the model.

In the most general case the grey-box model is given as the continuous-discrete
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time state space model:

dT t = f (T t, U t, t)dt + G(T t, U t)dW t, (4.14)
Y tk = h(T tk , U tk) + etk , (4.15)

where the vector T t contains the states (typically temperatures) of the system at
time t. For further introduction to the equations we refer to (B.5)-(B.6).

The model is a so-called lumped model since all the temperatures in the wall or
the building are described by only a low number of temperatures. Conceptually
this implies that the thermal mass is lumped into a finite number of states, and
typically this number is rather low. The number of states is the model order and
for linear systems this is equal to the number of time-constants. For non-linear
systems the concept of time constants does not exists. As described in Appendix B
the number of states for a linear and stationary model corresponds to the order of
the auto-regressive part of the ARX model, and the ARX model is the equivalent
input-output or transfer function of the model. For non-linear models the concept
of a transfer function representation does not exists.

Linear (RC-network) models

The thermal characteristics of buildings and building components is frequently ap-
proximated by a simple network with resistors and capacitances, see for instance
(Sonderegger, 1978). This, so-called RC network model, is in fact just one (impor-
tant) example of a linear and stationary (time-invariant) grey-box model.

The linear and time-invariant grey-box model is written

dTt = (AT t + BU t)dt + dW t, (4.16)
Y tk = CT tk + etk , (4.17)

Where A, B, and C are matrices where the elements are functions of the physical
parameters - see the simple example below.

Example of a two state RC-network model

Let us consider a simple single zone RC-network model for a building with the
thermal mass divided between the inside of the building and the walls. The ther-
mal RC-network model is shown in Figure 4.1. The states of this second order
model are given by the temperature Tw of the large heat accumulating part of the
wall with the heat capacity Cw, and by the temperature Ti of the room air and pos-
sibly the inner part of the walls with the capacity Ci. Riw is the thermal resistance
for heat transfer between the room air and the heat accumulating part of the wall,
while Rwe is the thermal resistance against heat transfer from the wall part to the
ambient air with the temperature Te (the thermal resistances include ventilation
losses). The input heating power to the building is denoted by Φh.
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Figure 4.1: A two state RC-network model of a building.

Hence, the model for the state variables are

dTi =
1
Ci

(
1

Riw
(Tw − Ti) + gAsol Isol + Φh

)
dt + σidωi(t), (4.18)

dTw =
1

Cw

(
1

Riw
(Ti − Tw) +

1
Rwe

(Te − Tw)

)
dt + σwdωw(t), (4.19)

which, since it is a linear model, can also be written on matrix form[
dTi
dTw

]
=

[ −1
CiRiw

1
CiRiw

1
CwRiw

−
(

1
CwRiw

+ 1
CwRwe

) ] [ Ti
Tw

]
dt +

[
0 1

Ci

gAsol
Ci

1
CwRwe

0 0

]  Te
Φh
Isol

 dt +
[

σidωi(t)
σwdωw(t)

]
. (4.20)

The model (B.3) describes the evolution of both states of the system. However, let
us assume that only the indoor air temperature is measured. If Tr is introduced to
denote the measured or recorded variables we can write

Tr,tk = [1 0]
[

Ti(tk)
Tw(tk)

]
+ etk , (4.21)

where etk is the measurement error at time ttk , which accompany the measurement
of the indoor air temperature.

The example in Appendix B describes how a grey-box is formulated for a simple
low-energy test building.

Guidelines for grey-box modelling

Similar to the stepwise procedure for the ARX models (Section 4.2), we now present
a stepwise procedure for using grey-box models. However, due to the internal
description the physical considerations are here very important to consider, com-
pared the ARX models procedure.
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• Sampling time: Grey-box models for buildings use temperatures as the states,
and for instance the indoor air temperature is most often an observed state of
the system. Since the indoor air temperature often contains significant high
frequency variation, the aliasing problem could be a serious issue, see also
Chapter 3. Consequently, in order to describe the high frequency variation
by the proper physical states, the sampling time should ideally be kept rather
low (in most cases lower than one hour).

• Values and physical units: First of all the physical units for all the variables
must be equivalent, note the unit of the time (dt) must be correct according
to units of the other variables. Secondly, the modelling is numerically most
robust if the units (e.g. W, kW, MW or GW) are selected in such a way that the
range of the values of the variables are equivalent (in particular we should
avoid that, for instance, some of the variables are measured such that the
numbers for some variables are, say, on the order of 108 and other variables
are on the order of 10−8).

• Initial identification of the states: The states, e.g. how to lump the thermal
mass, must be selected in accordance with the physical characteristics. For
instance for a house the main thermal mass might most appropriately be put
’inside’ the building if, for instance, the building has concrete floors (and
light walls). However, for other buildings this main thermal mass should be
allocated to walls, which by the way implies that the transfer of heat from
the inside to the outside is via this thermal mass.

In order to describe the variation of the indoor air temperature a state rep-
resenting this variable should be defined. However, typically the estimated
thermal mass related to this state will account also for e.g. a part of the fur-
nitures, etc.

Attention must also be on heat transfers through boundaries not related to
the climate, e.g. adjacent zones (rooms), as well as the ground. It should
be considered to include such boundary conditions depending on the mag-
nitude of the heat transfer, e.g. temperature differences over the boundary
and degree of insulation. Furthermore, identifiability issues becomes very
important to consider. For example, usually it will not be possible to iden-
tify thermal resistances related to more than one adjacent zone with constant
temperature.

• Initial system equations: Using the well-known equations for mechanisms
for heat transfer the heat balance for all the states, i.e. the systems equations,
must be written down. Add noise to the system equations. In general it is
recommended to start with a simple model, which is then stepwise extended until it
is found suitable with model validation.

• Initial measurement equations: Write down how the measurements relates
to the states of the system. Most frequently only a subset of the states is
measured. Some measurements might be functions of some states, and this
has to be written down as well using the measurement equation.

• Model estimation: The parameters of the model are estimated using some
software for grey-box model estimation like the R packages CTSM-R2 or TMB

2The estimation method used in CTSM-R is described in (Kristensen et al., 2004)

24



3. Notice that, as also mentioned in the Users Guide for CTSM-R (Team, 2015),
it is advisable to transform some of the parameters to ensure that the trans-
formed parameter can take all values (from −∞ to ∞). For instance for a
variance, which should be non-negative, it is preferable to estimate log σ2 in-
stead of just estimating σ2. Please consult the CTSM-R user guides for more
practical hints.

• Model validation: In this step validation of the estimated model is carried
out. The validation follows the steps presented in detail in Section 5. Below
are additional points to be aware of related to grey-box model validation:

– Plot of residuals: The time series of residuals must show a reasonable
stationary behavior. If, for instance, the residuals are relatively very high
when the heat is turned on, then this part of the model must be revised.
In advanced approaches when the stochastic part is also in focus, this
part of the model can be used to describe that the uncertainty is higher
for large solar radiation. The structure describing the uncertainty should
(in the optimal situation) be built into the model.

– Check if all parameters are significant: If any parameter is not signif-
icant (consult the t-test values), then this parameter must be removed
and the model reduced accordingly.

– Check if serious correlations exist between estimated parameters: Use
the correlation matrix of the parameter estimates to see if any correlation
coefficient is close to 1 or−1 (as a rule of thumb larger than |0.98|). If this
is the case it indicates that the two parameters are strongly linked, and
the problem can typically be solved either using for instance the restric-
tion that the parameters are equal, or by fixing one of the parameters at
a physical reasonable value.

– Check if residuals are white noise: If the ACF and/or the cumulated
periodogram tests indicates that the residuals are still autocorrelated,
then the model should be extended to obtain a more detailed descrip-
tion of the system. This is typically achieved by increasing the model
order, which for a state-space model implies that another state must be
introduced, or by introducing additional or transformed inputs.

– Check if the residuals are uncorrelated with all potential input vari-
ables: In the case of a significant cross-correlation between the residu-
als and an input variable this input variable must be introduced in the
model. Here both physical and statistical approaches can be used, see
also (Kristensen et al., 2003).

• Model comparison: Models can be compared using statistical tests depend-
ing on their relation.

– Nested models: Models are nested when a smaller model is a sub-model
of a larger model. Two nested models can be compared directly us-
ing the likelihood values provided by CTSM-R and the Likelihood Ra-
tio Test, see (Madsen and Thyregod, 2011). For a grey-box model se-
lection procedure for buildings based on a forward selection approach

3TMB: Template Model Builder: A General Random Effect Tool http://tmb-project.org
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(stepwise extension of a simple model) using likelihood ratio tests see
(Bacher and Madsen, 2011).

– Non-nested models: Two non-nested models can be compared by using
the information criteria. If the model is going to be used for forecasting
or control, the Akaike Information Criterion (AIC) criterion is reason-
able, but if the model is used for identifying the physical parameters,
then the BIC criterion is best.

• Model selection choice: Depending on the outcome of the model valida-
tion and optionally a model comparison it should be decided to either keep,
reduce or extend the model. A model is found suitable when the model vali-
dation is successful, if however the model validation reveals that the model
needs to be reduced or extended, a new model should be formulated. It is
recommended to reduce or extend only one part of the model in each step.
Thereafter the procedure should be repeated from the model estimation step
with the re-formulated model.

Calculation of HTC and C values: The overall HTC value is calculated using
the well-known rules for calculating the total resistance in electrical circuits. For a
multi-room model several HTC values can be calculated following these rules.

The total heat capacity is calculated by adding the relevant individual capacities.
Here it should, however, be noticed that the lumped model is an approximation
of a distributed system, and (Goodson, 1970) has shown that in this case the ap-
proximation is only reasonable if a large number of capacitances is used. Hence,
for determining the total capacity for instance for a thick homogenous wall, it is
advisable to use a rather large number of R-C components in series, and in order
to limit the number of free parameters the same value for R and C can be used for
all the lumped states through the wall. See (Sonderegger, 1978) or (Goodson, 1970)
for more information.

non-linear and non-stationary models

The basic steps needed for non-linear and non-stationary modelling are the same
as for linear modelling. However, now the non-linear and non-stationary formula-
tion, as defined by (4.14)-(4.15), are considered, and, for instance, non-linear phe-
nomena can now be described. This includes infrared radiation, convection, ab-
sorption of solar radiation, etc.

Instead of almost listing the steps from the linear case, we shall consider a simple
example.

Example - non-linear grey-box model

In the example we shall consider modelling of the thermal dynamics of a PV test
reference module mounted in a test reference environment.
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The test reference environment is designed for testing PV modules under specific
conditions for which the modules can be applied when integrated as a cladding
device into the building. The test environment is constructed in such a way that
the thermal energy obtained by convection and radiation exchanges at the rear of
the PV module can be measured accurately. As indicated on Figure 4.2 the test
environment box is composed of an insulated cavity of 10 cm with an air in- and
outlet placed at the back of the box. Considering the long wave radiative transfer
it was decided to have the cavity painted in defined colors. The box is equipped
with a number of air and surface temperature sensors, making data available for
modelling work.

Figure 4.2: View of vertical cross section of PV-element. Main sources for energy
transfer and measurement points are indicated.

The modelling is described in detail by Jiménez et al. (2008b) and (Friling et al.,
2009).

For the final model the long wave radiation to the surroundings are relative to
some mean radiant temperature (Trad). In the model the mean radiant temperature
is treated as a parameter. Furthermore we will introduce a non-linear description
of the radiative transfer between the PV module and the pack-panel of wood. Fi-
nally it is also assumed that the absorptivity depends on the wind speed. The
model is

dT = k0(T4
rad − T4)dt + k1Wk2(Ta − T)dt (4.22)

+ k3∆Tdt + k4(T4
w − T4)dt (4.23)

+ k5Wk6 Ivdt + dw (4.24)
Tm = T + e. (4.25)

Note that the absolute temperature has to be used.

It is clear that non-linear and non-stationary models call for more advanced pro-
cedures for structure identification and modelling. Here we will briefly give a few
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hints and references on such advanced procedures.

• Autocorrelation functions are only able to measure linear lag-dependencies.
An extention to identification of non-linear methods for measuring or identi-
fying the lag-dependencies are the family of Lag-Dependent-Functions (LDFs).
These functions are described by Nielsen and Madsen (2001)

• Identification of non-linear and non-stationary relations using non-parametric
or semi-parametric methods, see Madsen et al. (2007)

• Validation of grey-box models using posterior odds, etc.

• Use a priori information
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Model selection and validation

In this section techniques which must be applied for model selection and valida-
tion are presented. If these techniques are applied appropriately, then it can be
ensured that the identified model is suitable and thus that the estimated perfor-
mance measures can be trusted.

It is assumed that the important steps of Experimental Design and Data Collection
have been conducted, and consequently that time series of good quality data are
given. Here it should be noticed that a bad experimental setup might lead to a sit-
uation where the model is NOT identifiable - see (Madsen et al., 2007) for a discus-
sion on identiability issues. As an example a control of the indoor air temperature
might lead to a situation where the internal thermal mass can not be identified.

Model building is an iterative procedure, which consists of the following steps:

1. Selection/Identification (of model structure and order)

2. Estimation (of model parameters)

3. Validation (of the model)

If the model validation fails, the model structure has to be revised.

In this guide we will consider only rather simple models, and the model selection
procedure is then greatly simplified compared to procedures normally used in time
series analysis; see e.g. (Madsen, 2008) Chapter 6, 7, 8 and 9 for more advanced
methods for model selection.

Basically the two main categories of problems related to the order of the model are:

1. Model too simple: A common problem is that the residuals for a given model
are autocorrelated. In this case the model needs to be extended (for grey-box
models more states are needed). Another common problem is that the resid-
uals are cross-correlated with some explanatory variables (e.g. large residuals
for large wind speeds). In this case this (or these) explanetory variable(s)
needs to be included in the model.

2. Model too large: A common problem is that some of the parameters are in-
significant. In order to ensure a reliable estimation of the performance param-
eters the model must then be reduced by putting insignificant parameters to
zero (removing the parameters).
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In this section we shall describe some of the basic techniques for model selection
and validation.

Basic model selection (identification) techniques

The following methodologies can be used in relation to model selection:

• Test for white noise residuals. Typically the autocorrelation function (ACF)
of the residuals is used here. If a test for white noise residuals fails, see the
section below on validation, then the model must be extended by extending
the model order (for ARX models) or by extending the number af states (for
grey-box models).

• Test for cross-correlation with inputs. If the Cross-Correlation Function
(CCF) between the residuals of a given model and input variables are signifi-
cant, see (Madsen, 2008) p. 230, then this input variable has to be introduced
in the model.

• Test for parameter significance. See the next section on model validation.
Here it is mentioned that if a parameter is found to be insignificiant, then in
general this parameter should be removed from the model, and the parame-
ters of the reduced model estimated.

• Check for correlation between parameters. Most software for parameter es-
timation provides a correlation matrix of the estimated parameters. A numer-
ically very high (as a rule of thumb larger than 0.98) correlation between two
parameter estimates indicates that one of these two parameters should be
either excluded from the model or fixed to some physically assumed value.

• Test between (nested) models. If two models are nested, i.e. the smaller
model (B) can be found just by removing parts of a larger model (A), then the
Likelihood Ratio Test (LRT) is very useful.

The LRT value is given as D = 2 · (log LA − log LB), where log LA is the
logarithm of the likelihood function for model A. Given that the model can
be reduced to model B the quantity D is χ2(k−m) distributed, where k and
m are the number of parameters in model A and B, respectively. For large
values of D (use the χ2 test) it is concluded that the best model is the larger
model.

In CTSM the value logL is found using summary().

• Comparison between (non-nested) models. If two models are non-nested,
then methods based on Information criteria like AIC and BIC can be used - see
page 174 in (Madsen, 2008).

All the methods described here are so-called in-sample methods for model selec-
tion. They are characterized by the fact that the model complexity is evaluated
using the same observations as those used for estimating the parameters of the
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model. For the in-sample methods statistical tests are used to access the signif-
icance of extra parameters, etc., and when the improvement is small (in some
sense), the parameters are considered to be statistically insignificant.

In data-rich situations, the performance can be evaluated by splitting the total set
of observations in three parts: A training set used for estimating the parameters, a
validation test (used for out-of-sample model selection), and a test set used measur-
ing the performance on a independent data set. See e.g. (Hastie et al., 2001) and
(Madsen and Thyregod, 2011) p. 32 for more information on these procedures.

Basic model validation procedure

The following procedure should as a minimum be carried out to validate the iden-
tified model:

1. Time series plots. Time series plots of residuals and the inputs, as well as
measured and predicted output, should be inspected, to see if any clear pat-
terns are present. This is also often a simple and effective way to find model
deficiencies and thus to suggest improvements to the model. The variabil-
ity of the residuals should be almost the same at all time periods. See the
examples in Appendix G and H.

2. Test for parameter significance. A model parameter is significant if it can
be tested to be significantly different from zero. Most often this done by a
t-test and in most statistical software the p-value is directly printed with the
model fit results, e.g. in R summary() on an lm() fit prints out the p-value (in
the column Pr(>|t|)) and indicates the level with stars. See p. 172-173 in
(Madsen, 2008).

Related specifically to ARX models selected using the procedure in Section
4.2 the following two conditions should be met:

(a) At least one coefficient is significant for each input. If for one input
all the coefficients are not significant, then: remove the input from the
model and restart the modelling procedure.

(b) If the highest order AR coefficient (i.e. φp) estimate is not significant,
then it is recommended to reduce the model order p by one. It is left as a
recommendation, as it might also be an indication of non-linear or time
dependent systematic effects, which could lead to an advanced model
setup.

3. Tests for white noise residuals. This test should preferably be carried out
both in the time domain using the ACF and in the frequency domain using
the Cumulated Periodogram.

• Test using the ACF
This is a test in the time domain. The ACF of the residuals should be in-
significant – or more specifically the residuals are not significantly dif-
ferent from white noise. This means that there must be no systematic
pattern in the ACF, hence the following conditions should be fulfilled
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– Not more than 5-10% of the lag correlations should be above the
95% confidence bands for white noise.

– The correlation for the shorter lags should be insignificant. Typi-
cally an exponential decaying pattern from lag 1 is found, indicating
that a higher order model should be applied.

– Lag correlations around the 24 hours lag should be insignificant.
Significant 24 hours lag correlation indicates a daily pattern in the
residuals, which is related to a model deficiency occurring at a par-
ticular time of the day, e.g. the effect of solar radiation is systemati-
cally too low in the morning.

For a more detailed description of the ACF test see p. 103-108 in (Mad-
sen, 2008).

• Test using the cumulated periodogram
This is a test in the frequency domain. For a description of the proce-
dure we refer to (Madsen, 2008) page 176. The cumulated periodogram
is useful to detect cyclic behavior in the residuals. Very often a signifi-
ciant cyclic behavior is seen corresponding to the 24 hour period. This
problem might reflect a problem with a description of how the solar ra-
diation influences the building.

4. Physical considerations. Clearly, the estimated performance measures must
be evaluated from a physical point of view to verify that they are in within
reasonable ranges from a physical viewpoint.

The model validation is included in the model procedures presented in Section 4.
Both partly in the model identification and as a final step for validation of the iden-
tified model. For further considerations on model validation, see Section 11.6.4 in
(Jiménez and et al., 2015).
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Introduction to time series modelling

Very often the correlation of data in time is disregarded. For instance in regres-
sion analysis the assumption about serial uncorrelated residuals is often violated
in practice. However, it is crucial to take this autocorrelation into account in the
modelling procedure. This autocorrelation can be taking into account by using
time series models, like the ARX, Box-Jenkins, and State-space models, see (Mad-
sen, 2008).

Heat dynamics of a building

Figure A.1: Measurements from an unoccupied test building. The input variables
are (1) solar radiation, (2) external air temperature, and (3) heat input. The output
variable is the indoor air temperature.

Figure A.1 shows measurements from an unoccupied test building. The lower
plot shows the indoor air temperature, while on the upper plot the external air
temperature, the heat supply, and the solar radiation are shown.

For this example it might be interesting to characterize the thermal behavior of the
building. As a part of that the resistance against heat flux from inside to outside
can be estimated. It might also be useful to establish a dynamic model for the
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building and to estimate the time constants. Knowledge of the time constants can
be used for designing optimal controllers for the heat supply.

For this case methods for transfer function modelling as described by ARX or Box-
Jenkins models, where the input (explanatory) variables are the solar radiation,
heat input, and outdoor air temperature, while the output (dependent) variable is
the indoor air temperature can be applied. For transfer function models it is crucial
that all the signals can be classified as either input or output series related to the
system considered.

Introduction to time series models

Let us introduce some of the most important concepts of time series analysis by
considering an example where we look for simple models for predicting diurnal
measurements of heat consumption.

In the following, let Φt denote the heat consumption (the heat load) at time (day)
t. The first naive guess would be to say that the heat consumption the next day is
the same as today. Hence, the predictor is

Φ̂t+1|t = Φt. (A.1)

This predictor is called the naive predictor or the persistent predictor. The syntax used
is short for a prediction (or estimate) of Φt+1 given the observations Φt, Φt−1, . . . .

Next day, i.e. , at time t + 1, the actual heat consumption is Φt+1. This means that
the prediction error or innovation may be computed as

εt+1 = Φt+1 − Φ̂t+1|t. (A.2)

By combining Equations (A.1) and (A.2) we obtain the stochastic model for the heat
load

Φt = Φt−1 + εt. (A.3)

If {εt} is a sequence of uncorrelated zero mean random variables (white noise), the
process (A.3) is called a random walk. The random walk model is very often seen
in finance and econometrics. For this model the optimal predictor is the naive
predictor (A.1).

However, it is obvious to try to consider the more general model

Φt = ϕΦt−1 + εt, (A.4)

called the AR(1) model (the autoregressive first order model). Notice that the ran-
dom walk is obtained for ϕ = 1.

By introducing the backward shift operator B by

BkΦt = Φt−k, (A.5)

the model can be written in a more compact form. The AR(1) model can be written
as

(1− ϕB)Φt = εt. (A.6)
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Given a time series of observed heat load, Φ1, Φ2, . . . , ΦN, the model structure can
be identified, and, for a given model, the time series can be used for parameter
estimation.

The model identification is most often based on the estimated autocorrelation func-
tion, see (Madsen, 2008).

The autocorrelation function shows how the heat load now is correlated to previ-
ous values for the heat load; more specifically the autocorrelation in lag k, called
ρ(k), is simply the correlation between Φt and Φt−k for stationary processes.

Input-output (transfer function) models

Let us now introduce the so-called transfer function models or input-output models.
This class of models describes the relation between an input series {Ut} and an
output series {Yt}. Basically the models can be written

Yt =
∞

∑
k=0

hkUt−k + Nt, (A.7)

where {Nt} is a correlated noise process.

This gives rise to the so-called Box-Jenkins transfer function model, and the ARX
model:

φ(B)Yt = ω(B)Ut + εt, (A.8)

where φ, ω, and θ are polynomials in B.

An important assumption related to the Box-Jenkins transfer function and ARX
models is that the output process does not influence the input process. Hence
for the heat dynamics of a building example in Section A.1, a transfer function
model for the relation between the outdoor air temperature and the indoor air
temperature can be formulated. This model can be extended to also include the
solar radiation and the heat supply (provided that no feedback exists from the
indoor air temperature to the heat supply).

In the case of multiple processes with no obvious split in input and output pro-
cesses, a multivariate approach must be considered. Alternatively, if for instance
the indoor air temperature is controlled, then the input and output time series must
be altered. In this case the output is typically the heat consumption.

State-space models

Until now all the models can be considered as input-output models. The purpose
of the modelling procedure is simply to find an appropriate model which relates
the output to the input process, which in many cases is simply the white noise
process. An important class of models which not only focuses on the input-output
relations, but also on the internal state of the system, is the class of state space models.
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A state space model in discrete time is formulated using a first order (multivari-
ate) difference equation describing the dynamics of the state vector, which we shall
denote X t, and a static relation between the state vector and the (multivariate) ob-
servation Y t. More specifically the linear state space model consists of the system
equation

X t = AX t−1 + But−1 + e1,t, (A.9)

and the measurement equation

Y t = CX t + e2,t, (A.10)

where X t is the m-dimensional, latent (not directly observable), random state vector
Furthermore ut is a deterministic input vector, Y t is a vector of observable (measur-
able) stochastic output, and A, B, and C are known matrices of suitable dimen-
sions. Finally, {e1,t} and {e2,t} are vector white noise processes.

For linear state space models the Kalman filter is used to estimate the latent state
vector and for providing predictions. The Kalman smoother can be used to estimate
the values of the latent state vector, given all N values of the time series, for Y t.

To illustrate an example of application of the state space model, consider again the
heat dynamics of the test building in Section A.1. Madsen and Holst (1995) shows
that a second order system is needed to describe the dynamics. Furthermore it is
suggested to define the two elements of the state vector as the indoor air tempera-
ture and the temperature of the heat accumulating concrete floor. The input vector
ut consists of the external air temperature, the solar radiation, and the heat input.
Only the indoor air temperature is observed, and hence, Y t is the measured indoor
air temperature. Using the state space approach gives us a possibility of estimat-
ing the temperature of heat accumulating in the concrete floor using the so-called
Kalman filter technique, see (Madsen, 2008).
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Introduction to grey-box models and
noise processes

The purpose of this Appendix is to introduce the concept of grey-box models and
to describe the physical reasons for the presence of both system and measurement
noise. Let us consider the continuous time formulation, where the stochastic model
in state space form is formulated as an extension of the ordinary formulated deter-
ministic lumped model. This gives rise to the so-called grey-box model formulation.

Let us first focus on how to describe the dynamics of physical systems, and we
will first consider the classical ODE description, and subsequently the formulation
using Stochastic Differential Equations (SDEs).

Then the grey-box model is more formally introduced. The grey-box model uses
SDEs to describe the dynamics of the states of the system in continuous time. This
part of the model is called the system equations. The relations between the dis-
crete time observations and the states are described by the measurement equa-
tions.

ODE formulation of the system equations

Very often a lumped description of dynamical systems is used. This holds also
for the heat dynamics of buildings which frequently are described by a system of
linear differential equations, and in a very useful matrix notation the equations can
be parameterized by the deterministic linear model in continuous time of the states X of
the system:

dX
dt

= AX + BU, (B.1)

where X is the state-vector and U is the input vector. The dynamical behaviour of
the system is characterized by the matrix A, and B is a matrix, which specify how
the input signals (outdoor air temperature, solar radiation, heat supply, etc.) enter
the system. Such linear (often called RC formulation) are often used for modelling
the thermal performance of buildings.
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Characterization of ODEs

Let us generalize to the non-linear ODE’s in this paragraph, and briefly mention
how ODEs can be characterized:

• Ordinary Differential Equations (ODE’s) provide deterministic description of
a system:

dX t = f (X t, ut, t)dt t ≥ 0, (B.2)

where f is a deterministic function of the time t and the state X.

• The solution to an ODE is a (deterministic) function of time.

• For systems described by ODEs future states of the system can be predicted
without any error!

• Parameters can be calibrated using curve fitting methods (... but please check
for uncorrelated residuals if you call it an estimate, if you are using statistical
tests, or if you provide confidence intervals!).

• Consequently Maximum Likelihood Estimation (MLE) and Prediction Error
Methods are seldom the best methods for ’tuning the parameters’.

SDE formulation of the system equations

Let us again first consider the linear state space formulation. For most real life sys-
tems, the states can not be predicted exactly, i.e. Equation B.1 is not able to exactly
predict the future behaviour of the states. To describe the deviation between B.1
and the true variation of the states an additive noise term is introduced. Then the
model of the heat dynamics is described by the stochastic differential equation

dX = AXdt + BUdt + dw(t), (B.3)

where the n dimensional stochastic process w(t) often is assumed to be a process
with independent increments. B.3 is the system equations of a stochastic linear state
space model in continuous time, i.e. a system of stochastic differential equations.

There are many reasons for introducing such a noise term:

• Lack of the model. For instance the dynamic, as described by the matrix A in
B.3 might be an approximation to the true system.

• Unrecognized inputs. Some variables, which are not considered, may affect
the system.

• Measurements of the input are noise corrupted. In this cases the measured
input is regarded as the actual input to the system, and the deviation from
the true input is described by w(t).
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Characterization of SDEs

Let us again, for a moment, generalize to the class of non-linear models, and then
focus on the characterization of models described by SDEs.

• To describe the deviation between the ODE and the true variation of the
states a system noise term is introduced, i.e.

dX t = f (X t, ut, t)dt + G(X t, ut)dW t (B.4)

• Reasons for including the system noise:

1. modelling approximations.

2. Unrecognized inputs.

3. Measurements of the input are noise corrupted.

• For SDE’s the solutions are stochastic processes

• This implies that the future values are not known exactly (the outcomes are
described by probability density functions).

• Here proper statistical methods like MLE and Prediction Error Methods are
appropriate for estimating the parameters – and we can easily test for hy-
pothesis using statistical tests.

The grey-box model

We are now ready to provide a more formal introduction to the grey-box model.

The grey-box model is formulated as a continuous-discrete time state space model,
which, as previous explained, consists of the system equations formulated in con-
tinuous time, and the measurement equations formulated in discrete time.

The dynamics of the system is described in continuous time using a set SDEs; one
for each of the states of the system. The systems equations1 are:

dX t = f (X t, U t, t)dt + G(X t, U t)dW t, (B.5)

where:
X t ∈ Rn is the n-dimensional state vector,
U t ∈ Rr is an r-dimensional known input vector,
f is the drift term,
G is the diffusion term,
W t is a Wiener process of dimension n with incremental covariance Qt

1Please notice that, since in this document the states are most often a temperature (of a wall,
indoor air, etc. ) we shall most often use T t to denote the state vector
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The discrete time observations are functions of states and inputs, and are subject
to noise, as described by the discrete time measurement equations:

Y tk = h(X tk , U tk) + etk , (B.6)

where:
Y tk ∈ Rm is the m-dimensional vector of measurements at time tk,
h is the measurement function,
etk ∈ Rm is a Gaussian white noise with covariance Σtk .

It is assumed that in total N observations are available at the time points:

t1 < . . . < tk < . . . < tN.

Finally, it is assumed that X0, W t, etk are independent for all (t, tk), t 6= tk.

Let us consider an example:

Example: RC model for the heat dynamics of a building

As an example of a model in the class described by B.3 consider the following
example from (Madsen and Holst, 1995), which is a proposed model for a very
tight low energy test building situated at the campus of the Technical University
of Denmark, as illustrated on Figure B.1. Note, that the notation symbols used
in this example differs slightly from elsewhere in the document. For the consid-

Figure B.1: The states and input of a low energy test building.

ered building it is reasonable to assume that all the heat accumulating medium is
situated inside the building. The lumped model is[

dTm
dTi

]
=

[ −1
ricm

1
ricm

1
rici

−
(

1
raci

+ 1
rici

) ] [ Tm
Ti

]
dt +

[
0 0 Aw p/cm

1/(raci) 1/ci Aw(1− p)/ci

]  Ta
φh
φs

 dt +
[

dwm(t)
dwi(t)

]
,(B.7)
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where the states of the model are the temperature of the room air, Ti. (and the
inner part of the walls), and the temperature Tm of the large heat accumulating
medium. The constants cm, ci, ra, ri, Aw and p are equivalent to thermal parame-
ters, which describes the dynamical behaviour of the building. Aw and p are the
effective window area, and the percentage of the heat which is transfered to the
heat accumulating medium, respectively.

Equation B.3 describes the transfer of all the states of the system; but it is most
likely that only some of the states are measured. If we for instance consider the
state space model in B.7 it is reasonable to assume that the temperature of the
indoor air is measured; but not the temperature of the large heat accumulating
medium (it might also be difficult to find a reasonable temperature to measure in
order to represent the temperature of the heat accumulating part of the wall and
floors).

In the general linear case we assume that only a linear combination of the states
are measured, and if we introduce Tr to denote the measured or recorded variables
we can write

Tr,tk = CTi,tk + etk , (B.8)

where C is a constant matrix, which specifies which linear combination of the states
that actually are measured. The equation is for obvious reasons called the mea-
surement equation. In practice, however, C most frequently acts only as a matrix
which picks out the actual measured states.

The term etk is the measurement error. The sensors that measure the output signals
are subject to noise and drift.

Often it is assumed that etk is white noise with zero mean and variance R2. Fur-
thermore it is assumed that ω(t) and etk are mutually independent, which seems
to be quite reasonable. However, the measurement error may consist of both a sys-
tematic error and a random error. In statistical modelling the random error can be
accounted for by extending the length of the experiment. The systematic error, on
the other hand, is more complicated. Ideally, the experiment should be repeated
with randomly picked and individually calibrated experiments, and then the total
sequence of experiments can be estimated as described in (Kristensen et al., 2004).

As an example consider the system described by B.7, and assume that only the
indoor air temperature is measured. Then the measurement equation simply be-
comes

Tr,tk = [0 1]
[

Tm(tk)
Ti(tk)

]
+ etk , (B.9)

where etk is the measurement error, which accomplish the measurement of the in-
door air temperature.

41



The family of linear models and their
characteristics

Let us consider the linear grey-box model formulated in the previous appendix.
This model is formulated as a linear model in continuous time as a set of coupled
stochastic differential equations.

Discrete time models in state space form

Frequently, the method of finite differences is used for transforming differential
equations into difference equations. This is, however, very often a crude approx-
imation, and more adequate techniques are prefered, see for instance (Kristensen
and Madsen, 2003). In the present situation, where the system is assumed to be
described by the stochastic differential equation B.3, it is analytically possible to
perform an integration, which under some assumptions exactly specifies the sys-
tem equation in discrete time.

For the continuous time model B.3 the corresponding discrete time model is ob-
tained by integrating the differential equation through the sample interval [t, t+ τ].
Thus the sampled version of B.3 can be written as

T(t + τ) = eA(t+τ−t)T(t) +
∫ t+τ

t
eA(t+τ−s)BU(s)ds +

∫ t+τ

t
eA(t+τ−s)dw(s). (C.1)

Under the assumption that U(t) is constant in the sample interval the sampled
version can be written as the following discrete time model in state space form

T(t + τ) = φ(τ)T(t) + Γ(τ)U(t) + v(t; τ), (C.2)

where

φ(τ) = eAτ; Γ(τ) =
∫ τ

0
eAsBds, (C.3)

v(t; τ) =
∫ t+τ

t
eA(t+τ−s)dw(s). (C.4)

If the input is not constant in the sample interval other methods exists – see for
instance (Kristensen and Madsen, 2003).
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On the assumption that w(t) is a Wiener process, v(t; τ) becomes normal dis-
tributed white noise with zero mean and covariance

R1(τ) = E
[
v(t; τ)v(t; τ)′

]
=
∫ τ

0
φ(s)R′1φ(s)′ds. (C.5)

The total state space form most frequently include the measurement equation,
which in this case is unchanged from the continuous time case, i.e. :

Tr(t) = CT(t) + e(t). (C.6)

If the sampling time is constant (equally spaced observations), the stochastic dif-
ference equation can be written

T(t + 1) = φT(t) + ΓU(t) + v(t), (C.7)

where the time scale now is transformed such that the sampling time becomes
equal to one time unit.

Notice that compared to the continuous time model we observe that:

• Equidistant data is assumed and hence the possibility of time-varying sam-
pling times is lost.

• Furthermore, the direct physical interpretation of the parameters is lost.

• Finally, a much higher number of parameters is typically needed which im-
plies lower efficiency and a lower robustness.

The transfer function form

The (discrete time) transfer function form is also frequently called the Box-Jenkins
transfer function, since (Box and Jenkins, 1970/1976) are responsible for the great
popularity of this class of models – see also (Madsen, 2008).

Let us introduce the transfer function form by showing how the transfer function
form is obtained from the state space form. Consider the following discrete time
state space model:

T(t + 1) = φT(t) + ΓU(t) + v(t), (C.8)
Y(t) = CT(t) + e(t), (C.9)

where {v(t)} and {e(t)} are mutually uncorrelated white noise processes with
variance R1 and R2, respectively.

By using the z-transform the state space form is written
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zT(z) = φT(z) + ΓU(z) + v(z), (C.10)
Y(z) = CT(z) + e(z). (C.11)

By eliminating T(z) in C.10 - C.11 we obtain

Y(z) = C(zI − φ)−1ΓU(z) + C(zI − φ)−1v(z) + e(z). (C.12)

Note that rational polynomials in z are found ahead of U(z) and v(z). Another
possibility, which will be demonstrated later on, is first to obtain the innovation
form, which is obtained directly from using a Kalman filter on the discrete time
model.

If {Yt} is a stationary process (the matrix A is stable) then the noise processes in
C.12 can be concentrated in only one stationary noise process. Following Madsen
(2008) we write

Y(z) = C(zI − φ)−1ΓU(z) + [C(zI − φ)−1K + I]ε(z), (C.13)

or alternatively in the transfer function form, the Box-Jenkins transfer function form or
the input-output form:

Y(z) = H1(z)U(z) + H2(z)ε(z), (C.14)

where {εt} is white noise with variance R, and H1(z) and H2(z) are rational poly-
nomials in z:

H1(z) = C(zI − φ)−1Γ, (C.15)

H2(z) = C(zI − φ)−1K + I. (C.16)

The matrix K is the stationary Kalman gain. R is determined from the values of R1,
R2, φ and C, since we have

K = φPCT(CPCT + R2)
−1, (C.17)

R = CPCT + R2, (C.18)

where P is determined by the stationary Ricatti equation

P = φPφT + R1 − φPC(CPCT + R2)CPφT. (C.19)

The ARMAX class of models is obtained in cases where the denominators in (C.14)
for H1 and H2 are equal, hence the models is written:

φ(z)Y(z) = ω(z)U(z) + θ(z)ε(z), (C.20)

where φ, ω, and θ are polynomials in z.

44



As shown above a transfer function can be found from the state space form by
simply eliminating the state vector. To go from a transfer function to a state space
form is more difficult, since for a given transfer function model, there in fact exists
a whole continuum of state space models. The most frequently used solution is
to choose a canonical state space model - see e.g. (Madsen, 2008), or to use some
physical knowledge to write down a proper connection between desirable state
variables, which have to be introduced for the state space form.

Notice that compared to the discrete time state space model we observe that:

• The decomposition of the noise into system and measurement noise is lost.

• The state variable is lost, i.e. the possibility for physical interpretation is fur-
ther reduced.

Impulse and response function models

A non-parametric description of the linear system is obtained by polynomial divi-
sion, i.e.

Y(t) =
∞

∑
i=0

hiU(t− i) + N(t), (C.21)

where Ni is a correlated noise sequence. The sequence {hi} is the impulse response
(matrix) function.

In the frequency (or z-) domain:

Y(z) = H(z)U(z) + N(z), (C.22)

where H(z) is the transfer function, and for z = eiω we obtain the frequency response
function (gain and phase).

Notice that compared to the transfer function models we now observed that:

• The description of the noise process is lost.

• The non-parametric model hides the number of time constants, etc.

The linear regression model

The linear regression model, which describes the stationary situation, can be ob-
tained directly from the state space models by using the fact that, in the stationary
situation, dT/dt = 0 - or from the state space model in discrete form by using,
T(t + 1) = T(t).
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Hence it follows that the steady state equation or regression model, which expresses the
stationary relationship between the influences U and the recorded temperature Tr,
is given by (from the continuous time model)

Tr = −CA−1BU, (C.23)

or (from the discrete time model)

Tr = C(I −Φ)−1ΓU. (C.24)

Alternatively, the stationary equation is obtained from the (discrete time) transfer
function model by putting z = 1.

Notice, that now also a description of the dynamics is lost.
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Calculation of the HTC, gA-value and
their uncertainties

When a model includes two estimates of the heat transfer coefficient Htot, then a
linear weighting of the two estimates can be applied to find the single minimum
variance estimate. In this section it is described how weighting is carried out.

For models with heating power as output

Linear minimum variance weighting for estimation of the HTC

The models which is covered by the derivation presented in this section have the
heating power as output

φ(B)Φh
t = ωi(B)Ti

t + ωe(B)Te
t + . . . + εt, (D.1)

where . . . represents other inputs to the model and B is the backward shift operator
(BkYt = Yt−k). The included polynomials to be considered are

φ(B) = 1 + φ1 B1 + φ2 B2 + . . . + φnφ Bnφ , (D.2)

ωi(B) = ωi,0 + ωi,1 B1 + . . . + ωi,ni Bni , (D.3)

ωe(B) = ωe,0 + ωe,1 B1 + . . . + ωe,ne Bne . (D.4)

To obtain the steady state gain (i.e. the infinite response from a step in an input)
the inputs are set to one, hence B = 1, and the polynomials become

φ(1) = 1 + φ1 + φ2 + . . . + φnφ , (D.5)

ωi(1) = ωi,0 + ωi,1 + . . . + ωi,ni , (D.6)
ωe(1) = ωe,0 + ωe,1 + . . . + ωe,ne . (D.7)

Two estimates of the heat transfer coefficient Htot (here shortened to H) can be
calculated with the model: one related to Ti and one to Te. They are found by
(Note: the sign for ωe(1), which comes from the energy balance Φh = H(Ti − Te),
hence an opposite sign for Te)

Hi =
ωi(1)
φ(1)

, (D.8)

He =
−ωe(1)

φ(1)
. (D.9)
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The minimum variance estimate of the total H is found with the Lagrange weight-
ing (linear interpolation of the two H)

H = λHi + (1− λ)He, (D.10)

and by finding its variance by (Note: Hi and He are stochastic variables, use the
rule: Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X, Y))

Var(λHi + (1− λ)He) = λ2Var(Hi) + (1− λ)2Var(He) + 2λ(1− λ)Cov(Hi, He),
(D.11)

differentiate Equation (D.11) and set it to zero in order to calculate the value of λ
that minimizes the variance

dVar(λHi + (1− λ)He)

dλ
= 0⇔ (D.12)

λ =
Var(He)−Cov(Hi, He)

Var(Hi) + Var(He)− 2Cov(Hi, He)
. (D.13)

Hence we need to calculate the variance of Hi and He and their covariance, which
is carried out in the following.

The parameter estimates are set into a single vector

θ = (φ0, φ1, . . . , φnφ , ωi,0, ωi,1, . . . , ωi,ni , ωe,0, ωe,1, . . . , ωe,ne). (D.14)

It has the covariance matrix V(θ), which is estimated when the model is fitted.

The H-values are parameterized as functions of the parameters (i.e. Hi = Hi(θ)
and He = He(θ)) and to calculate the needed variance and covariance we can use
the error propagation formula

V
[
Hi(θ), He(θ)

]
=

(
V
[
Hi(θ)

]
Cov

[
Hi(θ), He(θ)

]
Cov

[
Hi(θ), He(θ)

]
V
[
He(θ)

] )
(D.15)

=

d
(

Hi(θ)
He(θ)

)
dθ

V(θ)

d
(

Hi(θ)
He(θ)

)
dθ


T

, (D.16)

where the Jacobian can be calculated

d
(

Hi(θ)
He(θ)

)
dθ

=

( dHi(θ)
dφ1

dHi(θ)
dφ2

. . . dHi(θ)
dφnφ

dHi(θ)
dωi,0

dHi(θ)
dωi,1

. . . dHi(θ)
dωi,ni

dHi(θ)
dωe,0

dHi(θ)
dωe,1

. . . dHi(θ)
dωe,ne

dHe(θ)
dφ1

dHe(θ)
dφ2

. . . dHe(θ)
dφnφ

dHe(θ)
dωi,0

dHe(θ)
dωi,1

. . . dHe(θ)
dωi,ni

dHe(θ)
dωe,0

dHe(θ)
dωe,1

. . . dHe(θ)
dωe,ne

)
.

(D.17)

Hence each element in this matrix needs to be calculated, which is luckily not too
difficult!
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By using the differentiation rule(
f
g

)′
=

f ′g− f g′

g2 , (D.18)

the first element becomes

dHi(θ)

dφ1
=

d
(

ωi(1)
φ(1)

)
dφ1

=

(
dωi(1)

dφ1

)
φ(1)−ωi(1)

(
dφ(1)
dφ1

)
φ(1)2 =

0−ωi(1)
(

d(1+φ1+φ2+...+φnφ )

dφ1

)
φ(1)2

(D.19)

=
−ωi(1)
φ(1)2 .

Watching the steps above it becomes clear that for all the elements with φi the result
is the same, i.e.

dHi(θ)

dφi
=
−ωi(1)
φ(1)2 for i = 1, . . . , nφ. (D.20)

The next elements are with respect to ωi,i and here the differentiation is

dHi(θ)

dωi,0
=

d
(

ωi(1)
φ(1)

)
dωi,0

=

(
dωi(1)
dωi,0

)
φ(1)−ωi(1)

(
dφ(1)
dωi,0

)
φ(1)2 =

( d(ωi,0+ωi,1+...+ωi,ni )

dωi,0

)
φ(1)

φ(1)2

(D.21)

=
φ(1)
φ(1)2 =

1
φ(1)

,

and again by watching the steps it is clear that

dHi(θ)

dωi,i
=

1
φ(1)

for i = 0, . . . , ni. (D.22)

The elements where Hi(θ) is differentiated with respect to ωe,i are zero.

Now comes the elements in the second row where He(θ) is differentiated, starting
with

dHe(θ)

dφi
=

d
(−ωe(1)

φ(1)

)
dφi

=
ωe(1)
φ(1)2 for i = 1, . . . , nφ, (D.23)

since the same calculations as in Eq. (D.19) just replacing ωi(1) with −ωe(1) are
carried out.
The elements where He(θ) are differentiated with respect to ωi,i are zero.
The elements where He(θ) are differentiated with respect to ωe,i are calculated the
same way as in Eq. (D.21) where ωi(1) is replaced with −ωe(1) giving

dHe(θ)

dωe,i
=
−1

φ(1)
for i = 0, . . . , ne. (D.24)
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Finally we have all variables needed to calculate the Jacobian

d f (θ)
dθ

=

 −ωi(1)
φ(1)2

−ωi(1)
φ(1)2 . . . −ωi(1)

φ(1)2
1

φ(1)
1

φ(1) . . . 1
φ(1) 0 0 . . . 0

ωe(1)
φ(1)2

ωe(1)
φ(1)2 . . . ωe(1)

φ(1)2 0 0 . . . 0 −1
φ(1)

−1
φ(1) . . . −1

φ(1)

 .

(D.25)

The estimate of the variance of the heat transfer coefficient Htot is finally calculated
using Equation (D.11)

σ2
Htot

= Var(λHi + (1− λ)He). (D.26)

One point to notice is when Htot is estimated as described above using an ARX
model which is formulated as a linear regression model (by shifting all the lagged
output values to the right side of the equation) and fitted, then the sign of the
estimated coefficients of the AR polynomial is flipped, such that

φ1 =− φlm,1, (D.27)
φ2 =− φlm,2, (D.28)

...
φnφ =− φlm,nφ

, (D.29)

and the sign of the estimated covariances in Var(θ) involving the AR coefficients
must also be flipped.

gA-value

The models which are covered by the derivation presented in this section have the
heating power Φh as output

φ(B)Φh
t = ωsol(B)Isol

t + . . . + εt, (D.30)

where again . . . represents other inputs to the model and B is the backward shift
operator (BkYt = Yt−k) and the included polynomials are

φ(B) = 1 + φ1 B1 + φ2 B2 + . . . + φnφ Bnφ , (D.31)

ωsol(B) = ωsol,0 + ωsol,1 B1 + . . . + ωsol,ns Bns . (D.32)

The gA-value is the stationary gain of the transfer function from the solar radiation
input

gAsol =
−ωsol(1)

φ(1)
, (D.33)

and can therefore be directly calculated with the estimated coefficients.

The uncertainty of the gA-value can be calculated similarly to how it was done
for HTC using the first order error propagation approximation, see from Equation
(D.15).
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For models with internal temperature as output

In this section the calculation of the HTC and gA-value for models with internal
temperature as output are presented. A simple first order ODE RC-model is rewrit-
ten into transfer functions, such that it is elucidated which physical parameters are
represented by the transfer functions of a linear input-output model. The first-
order RC state-space model, which is equivalent to the simple setup ARX model
in Equation (4.7), is

dTi =

(
1

RC
(Te − Ti) +

1
C

Φh +
gAsol

C
Isol

)
dt + σω(t), (D.34)

Tr,tk = Ti(tk) + etk , (D.35)

where Ti is the internal temperature, Te is the external temperature, Isol is the in-
coming solar radiation, Φh is the heating power, Rie is the thermal resistance be-
tween internal and external, Ci is the heat capacity, gAsol is the gA-value and finally
the model output Tr is the recorded internal temperature.

Now Equation (C.12) without the stochastic and noise part gives the transfer func-
tion form in the frequency domain

Y(s) = C(sI − A)−1BU(s), (D.36)

where the input vector is

U =
[

Te Φh Isol
]

. (D.37)

Hence the transfer function is

H(s) = C(sI − A)−1B, (D.38)

and the matrices are

A =
−1

RieCi
, (D.39)

B =
[

1
RieCi

1
Ci

gAsol
Ci

]
, (D.40)

C = 1, (D.41)

which is inserted results in the transfer function

H(s) =
(

sI +
1

RieCi

)−1 [
1

RieCi
1
Ci

gAsol
Ci

]
(D.42)

=

[
1

RieCi
sI+ 1

RieCi

1
Ci

sI+ 1
RieCi

gAsol
Ci

sI+ 1
RieCi

]
(D.43)

=

[
1

sIRieCi+1
1

sICi+
1

Rie

gAsol
sICi+

1
Rie

]
. (D.44)

The steady state gain is obtained by setting s = 0

H(0) =
[

1 Rie gAsolRie
]

, (D.45)
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and thus the HTC estimate is

Htot =
1

ωh(1)
φ(1)

, (D.46)

where ωh(1)
φ(1) is the steady state gain of the estimated transfer function for the heat-

ing power in Equation (4.7). The gA-value is similarly obtained by

gAsol =

ωsol(1)
φ(1)

ωh(1)
φ(1)

=
ωsol(1)
ωh(1)

. (D.47)

The uncertainties are estimated by either the error propagation formula (linear
approximation) or a simulation approach.
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Experimental design; basic principles

This section describes briefly the experimental design related to test performed in
a PASSYS test cell at the Technical University of Denmark (PASSYS is a project
funded by the European Community for testing of PAssive Solar SYStems). For
a more elaborate description we refer to (Madsen and Schultz, 1993). The test
cell has a simple geometry, a simpler window arrangement, and a high insula-
tion level, and a very well defined construction with respect to the used materials
and their thermal properties. Furthermore, the south wall in the test cells can eas-
ily be exchanged with a different type of wall construction leading to a different
mathematical model for estimation. Besides, a comprehensive set of sensors for
measurement of air and surface temperatures as well as climatic data is available,
which ensures that even rather complicated models can be identified. For instance
for measuring the indoor air temperature seven sensors are used, and these sensors
are placed all over the volume of the room.

The aim is to optimize the input signal (mainly frequency, power level and du-
ration) in order being able to carry out experiments for estimating the thermal
characteristics of the test cell. We will use the tool CTSM to estimate these charac-
teristics using a grey-box model.

There are a number of benefits by using a continuous time model: The continu-
ous time formulation ensures that the parameters are easily interpreted as equiva-
lent thermal parameters, and the methods allow for changes in the sampling time,
which ensures that a stiff system like a house, with both short and long time con-
stants, can be identified.

Experimental design considerations

The experimental design is a very important part of an experiment. Furthermore,
it is well known that the design procedure is partly iterative, since results from any
experiment can be used for an improved design of future experiments.

Let us first briefly summarize some important aspects of the experimental design
with a focus on how to design the input signal (the heating) in order to ensure
resonable conditions for estimation of the parameters in a linear model:

• The system should be excited near the dynamics or time constants of interest.

• For a linear system an optimal signal shifts between minimum and maximum
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power in a random (or pseudo random) manner.

• The range defined by the minimum and maximum power should ensure that
the temperatures stays within reasonable values (for a building that might be
between 12 and 35 degrees).

• If the system is stiff (a large difference between the time constants) then it is
appropriate to design a signal which for some parts focus on the short time
constants and for other parts the focus should be on the long time constants.

• Theoretically, see e.g. (Madsen et al., 2007) or (Goodwin and Payne, 1977) it
can be shown that for linear systems the optimal test signal could be either a
white noise signal (or Pseudo Random Binary Signal - PRBS) or a harmonic
signal.

• It is very important to construct the test signal in such a way that there is
no (or minor) cross-correlation between the test signal and other input vari-
ables. For instance it is important to avoid a 24 hour variation in the test
signal (since this period is normally seen for solar radiation and outdoor air
temperature).

• If several input signals have to be selected then they must be constructed
such that there is no cross-correlation between these signals.

For a non-linear model it is important to ensure that basically all possible input
power levels are used - and not only the minimum and maximum values as for
linear systems.

The first design of the experiment is based on a knowledge of the physical prop-
erties of the test building. The PASSYS test cell consists of a heavily insulated test
room and an adjacent service room holding measuring equipment and a cooling
system. The two rooms are separated by a well insulated door. The wall, roof and
floor are made of a rigid steel frame insulated with mineral wool - the outside is
covered with sheets of stainless steel. On the inside 400 mm of polystyrene is glued
to a chipboard screwed to the steel frame. Thus the construction has no thermal
bridges. On the inside, the polystyrene is covered with a layer of chipboard to
which the final cover of 2 mm galvanized steel plates is screwed. The large insula-
tion thickness and the steel plates give the test cells relatively large time constants.

As a goal for the experiment it was decided to try to estimate simultaneously both
the short time and the long time dynamics of the test cell. As a starting point for
the experimental design we expect a short time constant around 10 minutes, and a
long time constant in the interval 38–100 hours.

PRBS signals

In order to ensure a reasonable information for an identification of the dynamics,
the system has to be excited in both the short time and the long time part of the
frequency scale of variations. This is ensured by controlling the heat input by a
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Pseudo Random Binary Sequence (PRBS-signal), which can be chosen to excite
the system in desired intervals of the frequency scale of variations.

The PRBS-signal is a deterministic signal shifting between two constant levels. The
signal may switch from one value to the other only at certain intervals of time, t
= 0, T, 2T,..., nT. The levels are here used to control the heat supply (on - off).
This signal contains some very attractive properties, e.g. the signal is uncorrelated
with other external signals (meteorological data), and it is possible, by selecting
the time period, T, and the order of the signal, n, to excite the system in the areas
of the scale of variations where interesting parameters are expected to be located.
See (Godfrey, 1980) for further information about PRBS-signals.

The time period, T, and the order of the PRBS-signal, n, are determined by the
expected time constants in the system. If only one PRBS-signal is used, the period
T is of an order of magnitude as the smallest time constant, and n may be selected
such that nT is of the order of magnitude as the largest time constant.

However, in order to excite a stiff system like a building in each part of the fre-
quency scale of variations, two different PRBS-signals can be used in a single ex-
periment. In order to identify the short time constant a PRBS-signal with T=20
minutes and n=6 is found to be a good choice for most experiments. The PRBS-
signal is periodic with a period of (2n -1)T = 21 hours. In some experiment this
PRBS-signal has been used in two periods, i.e. 42 hours. This procedure yields
good possibilities to estimate time constants between 5 minutes and 4 hours.

In order to search for the long time constant a PRBS-signal with T=20 hours and
n=4 can be used. This corresponds to a test period of 300 hours. This PRBS-signal
forms a good basis for estimating time constants between 10 hours and 160 hours.
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Multiple sensors; how to use all the in-
formation

Very often many sensors are used to measure e.g. the indoor air temperature in a
room. The advantage of this approach is that if some sensors shows abnormal val-
ues (e.g. if the sensor is exposed to direct solar radiation) then this can be detected
and the actual sensor can be disregarded. Another advantage is by using some ap-
propriate statistical approaches, then the measurement error of the concentrated
information (often similar to the mean of all sensors) is dramatically reduced com-
pared to the error of a single sensor. The techniques also often solves the problem
of finding a single value which can represent e.g. the indoor air temperature.

This appendix shows how relevant information from all sensors can be concen-
trated in so-called principal components. By using this method we are able to
find the most reasonable linear combination of all the measurements for repre-
senting the indoor air temperature or the surface temperature. If, for instance, a
single sensor is placed unsuccessfully for measuring the indoor air temperature,
the principal component will pick up this measurement as non-representative for
the indoor air temperature.

In this section the principal components for the air temperature will be considered
for illustration purposes only. It is well known from multivariate statistics that
the principal components correspond to an eigenvalue analysis of the covariance
matrix for the vector containing the measurements of the indoor air temperature.

Consider the stochastic vector

Xt = (X1t, X2t, · · · , X7t), (F.1)

which contains the seven measurements at time t of the indoor air temperature.
Based on time series of measurements of the indoor air temperature, the mean
value vector and the covariance matrix, Σ, associated with this stochastic vector,
are readily calculated.

The eigenvalues of Σ is then calculated and ordered in decreasing order

λ1 ≥ λ2 ≥ · · · ≥ λ7, (F.2)

and the associated eigenvectors are

p1, p2, · · · , p7. (F.3)
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The i’th principal component is then defined as

Yit = p′iXt. (F.4)

Hence, the first eigenvector defines the linear combination of the measurements,
which accounts for most of the variation of the measurements of indoor air tem-
perature. How much of the total variation, that is described by the first principal
component, is determined by the first eigenvalue.

For an ordinary and well planned experiment, the first principal component is
representative for the indoor air temperature, and it contains information from all
(in this case) seven measurements, see for example Appendix E or (Madsen and
Schultz, 1993) for more information about the considered experiment. So apart
from the fact that the analysis will pick up unsuccessful measurements it will also
reduce the measurement error, since information from several sensors is contained
in the first principal component.

Based on the estimated covariance matrix for the indoor air temperature we found
the following values of the first three principal components p1, p2 and p3:

p1 = (0.3781, 0.3785, 0.3784, 0.3787, 0.3780, 0.3771, 0.3758)′, (F.5)
p2 = (−0.547, 0.266,−0.105,−0.232, 0.011,−0.130, 0.740)′, (F.6)
p3 = (−0.583,−0.377, 0.391, 0.037, 0.073, 0.586,−0.126)′. (F.7)

The associated eigenvalues explain 99.9948 %, 0.0042 % and 0.0003 %, respectively,
of the variations of the indoor air temperature.

It is seen that the first principal component, determined by p1 and defined though
Eq. (F.4), is seen to put equal weight on all seven measurements, and consequently
this component will be the best representation for the indoor air temperature. Cor-
responding to a single measurement the measurement error for this component is
approximately 1/

√
7 times the original measurement error.

Likewise it is seen that the second principal component is seen to be approxi-
mately the difference between X7 and X1. Notice that X7 is the measurement near
the wall to the service room, which is heated in such a way that no heat trans-
fer takes place through this wall. X1 is the measurement near the floor of the test
cell. Hence, the second principal component measures a difference between the
temperature near the wall to the service room and the temperature near the floor
(which is the coldest).

It can be seen that this component behaves very much like the PRBS-signal! Hence,
it is reasonable to conclude that when the heating system is turned on, there are dif-
ferences between measurements, which are not present when the heating system
is turned off. This agrees very well with the fact that the electric bulbs positioned
on the floor were shielded with cylinders of aluminium foil with openings in the
top and bottom. When the heat was on (i.e. the bulbs are turned on) the stack effect
of the cylinders will force a warm air stream towards the ceiling of the test cell. In
case of no heating a more uniform temperature distribution in the test room will
occur.
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Also the third principal component is interesting. A further analysis has shown
that it measures some transient behaviour of the temperatures. The third principal
component happens to be large just after the heating system is turned on and small
just after it is turned off. For the higher order principal components no interesting
behaviour is found.

For the surface temperature a similar principal component analysis was carried
out. Also in this case the first principal component happens to be the best repre-
sentative for the surface temperature.
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Example: steady state model for the RRTB

In this section an example of identifying and validating a linear steady state model
for the Annex 58 test box is presented. The guidelines used are found in: Section
4.1.1 for identification, and in Section 5 for validation, of the model.

The model has the heating power from the heating system as output and climate
variables as input. During the example helping functions are used, they are all
found in the folder functions in files named as the function, e.g. the function
readSeries() is defined in the file functions/readSeries.R.

1. Sampling time. In the first chunk the data is read into a data.frame X and
resampled to six hours values, which based on experience is long enough a
sampling period to remove significant dynamics in the series

## Load the helping functions

source("sourceFunctions.R")

## Read the data from the 3rd common exercise as 6 hours

## average values

X <- readSeries("ce3b25C", Ts = 6 * 3600, selNames = c("t", "Ph",

"Ti", "Te", "Isol"))

## Remove beginning such that the same period is always

## removed independent of the sample period

X <- X[asP("2013-01-29 12:00") < X$t, ]

Then the series are plotted

setpar(mfrow = c(3, 1))

plot(X$t, X$Ph, type = "b", xlab = "", ylab = "$\\Phi_\\mathrm{h}$ (W)")

plot(X$t, X$Ti, type = "b", ylim = range(X$Ti, X$Te), xlab = "",

ylab = "Temperature ($^\\circ$C)")
lines(X$t, X$Te, type = "b", col = 2)

legend("right", c("Internal", "External"), col = 1:2, lty = 1)

plot(X$t, X$Isol, ylab = "$I_{\\mathrm{sol}} = G_{\\mathrm{vs}}$ (W/m$^2$)",

xlab = "", type = "b")

axis.POSIXct(1, X$t, xaxt = "s")
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From the plots it is clearly seen that the heating power varies and downward
peaks coincide with the global radiation. It is seen that the internal tempera-
ture is almost constant around 25 C over the entire period.

2. Model parametrization. First the full steady state linear model is estimated
and the summary is printed

## Fit a linear steady-state model

fit <- lm(Ph ~ 0 + Ti + Te + Isol, data = X)

## See the result

summary(fit)

##

## Call:

## lm(formula = Ph ~ 0 + Ti + Te + Isol, data = X)

##

## Residuals:

## Min 1Q Median 3Q Max

## -9.7640 -1.7888 0.2384 3.0137 5.2304

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## Ti 3.844442 0.042140 91.23 <2e-16 ***

## Te -3.441565 0.159629 -21.56 <2e-16 ***

## Isol -0.119634 0.006424 -18.62 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 3.627 on 39 degrees of freedom

## Multiple R-squared: 0.9978,Adjusted R-squared: 0.9977

## F-statistic: 5956 on 3 and 39 DF, p-value: < 2.2e-16

3. Model validation. By inspecting the P(>|t|) values it is seen that the coeffi-
cient for all inputs are estimated to be significant and the model is now val-
idated by investigating if the residuals are significantly different from white
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noise. The residuals’ ACF and CCF to the inputs are plotted using a helping
function

## Plot ACF and CCF to inputs (wrapped in the function

## acfccf())

acfccf(fit, X)
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No significant auto-correlation is left in the residuals and they are not signifi-
cantly correlated to inputs. The residuals are plotted as time series alongside
the inputs and outputs

tsPlotResiduals(fit, X, type = "b")
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No clear patterns are seen in the residuals and the model is thereby validated.

4. Calculation of HTC and gA-values (simple setup). Finally the HTC is calcu-
lated as described in Section D using a helping function which carries out the
linear minimum variance weighting and furthermore estimates the standard
deviation of the HTC

## Calculate the HTC using minimum variance linear weighting

HTCPhAsOutput(fit)
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## $Hi

## [1] 3.844442

##

## $He

## [1] 3.441565

##

## $H

## [1] 3.929419

##

## $sdH

## [1] 0.0321569

##

## $VarHs

## [,1] [,2]

## [1,] 0.001775803 0.00529240

## [2,] 0.005292400 0.02548129

and the gA-value is calculated as the stationary gain of the transfer function
from the solar radiation input, together with its estimated standard deviation
σgA

## Calculate the gA value and its uncertainty

gAPhAsOutput(fit)

## $gA

## [1] 0.1196339

##

## $sdgA

## [,1]

## [1,] 0.006424267

Finally, it is shown how the linear steady state model can also be fitted using ∆T
as input. First the ∆T is calculated

## Calculate the delta T

X$deltaT <- X$Ti - X$Te

and then the model is fitted

## Fit a linear steady-state model

fitDeltaT <- lm(Ph ~ 0 + deltaT + Isol, data = X)

and the HTC and gA-value estimates can then be directly read from the fitted co-
efficients

## See the result

summary(fitDeltaT)

...

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## deltaT 3.929419 0.035495 110.70 <2e-16 ***

## Isol -0.120567 0.007083 -17.02 <2e-16 ***

## ---

...
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The HTC is exactly the same and the gA-value is only slightly different, the same
goes for the estimated uncertainties.
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Example: Linear dynamics input-output
ARX model for RRTB

In this section an example of identifying and validating an ARX model for the
Annex 58 RRTB is presented. The guidelines used are found in: Section 4.1.1 for
identification, and in Section 5 for validation, of the model.

The model has the heating power from the heating system as output and climate
variables as input. During the example helping functions are used, they are all
found in the folder functions in files named as the function, e.g. the function
readSeries() is defined in the file functions/readSeries.R.

1. Sampling time. From previous experience with the RRTB a sampling time
around 60 minutes was found appropriate (this results in a model order of 2
as outlined in the following).
First, the helping functions are loaded, and the data is read and resampled to
1 hour average values with the function readSeries()

## Load the helping functions

source("sourceFunctions.R")

## Read the data

selNames <- c("Ph", "Ti", "Te", "Isol")

## The sampling time in seconds, use 1 hour average values

Ts <- 3600

## The 3rd common exercise with 25 C constant internal

## temperature

X <- readSeries("ce3b25C", Ts = 3600, selNames)

## See the first six rows of X

head(X)

## t Ph Ti Te Isol

## 1 2013-01-29 01:05:00 75 25.10942 7.764750 -0.7065730

## 2 2013-01-29 02:05:00 75 25.10904 8.551083 -0.5355782

## 3 2013-01-29 03:05:00 72 25.10096 8.895000 -0.8273256

## 4 2013-01-29 04:05:00 72 25.09975 8.588333 -0.4694283

## 5 2013-01-29 05:05:00 70 25.12138 8.961333 -0.2687661

## 6 2013-01-29 06:05:00 68 25.09758 9.394750 -0.2859173

Lagged series are added to X. Notice the naming convention that name.lk is
the k lagged series
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## Make lagged series

X <- makeLagged(X, selNames, nlags = 4)

## Remove beginning such that the same period is always

## removed independent of the sample period

X <- X[asP("2013-01-29 12:00") < X$t, ]

## See the column names

names(X)

## [1] "t" "Ph" "Ti" "Te" "Isol" "Ph.l0" "Ph.l1"

## [8] "Ph.l2" "Ph.l3" "Ph.l4" "Ti.l0" "Ti.l1" "Ti.l2" "Ti.l3"

## [15] "Ti.l4" "Te.l0" "Te.l1" "Te.l2" "Te.l3" "Te.l4" "Isol.l0"

## [22] "Isol.l1" "Isol.l2" "Isol.l3" "Isol.l4"

## Now see the first six rows of X for lagged Ti

head(X[, grep("^Ti.l", names(X))])

## Ti.l0 Ti.l1 Ti.l2 Ti.l3 Ti.l4

## 12 25.11225 25.10558 25.10496 25.11729 25.11454

## 13 25.10358 25.11225 25.10558 25.10496 25.11729

## 14 25.09746 25.10358 25.11225 25.10558 25.10496

## 15 25.11962 25.09746 25.10358 25.11225 25.10558

## 16 25.12037 25.11962 25.09746 25.10358 25.11225

## 17 25.12758 25.12037 25.11962 25.09746 25.10358

Then time series are plotted

setpar(mfrow = c(3, 1))

plot(X$t, X$Ph, type = "b", xlab = "", ylab = "$\\Phi_t$ (W)")

plot(X$t, X$Ti, type = "b", ylim = range(X$Ti, X$Te), xlab = "",

ylab = "Temperature (C)")

lines(X$t, X$Te, type = "b", col = 2)

legend("right", c("Internal", "External"), col = 1:2, lty = 1)

plot(X$t, X$Isol, ylab = "$I_{\\mathrm{sol}} = G_{\\mathrm{vs}}$ (W/m$^2$)",

xlab = "", type = "b")

axis.POSIXct(1, X$t, xaxt = "s")
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It is clearly seen how the heating power is decreased, when the solar radia-
tion is high during the day, and that the heating power increases when the
external temperature decreases.

2. Model parametrization. The model parametrization is as described in Sec-
tion 4.2 Eq. (4.6), with: the heating power as output, and the internal and
external temperature, and the global vertical south faced radiation, as input.
.

3. Model order selection (simple setup). Now a model of p = 0 order is fitted,
i.e. a steady state linear model, and the residuals ACF and CCF to the inputs
are plotted

## Fit a linear steady-state model

fit0 <- lm(Ph ~ 0 + Ti + Te + Isol, X)

## The ACF and CCF

acfccf(fit0, X)
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Clearly, the residuals are not white noise, hence the model order is increased
to p = 1, thus an ARX model is applied.
A helping function is available for generating the formula needed to define
an ARX model to be fitted, here demonstrated by defining an ARX model
with order p = 1

(frml <- frmlARX(outName = "Ph", inNames = c("Te", "Isol"), p = 1,

inNonLagNames = "Ti"))

## [1] "Ph.l0~Ph.l1+Te.l0+Isol.l0+Ti.l0+0"

The formula is then used to fit the model and the residuals ACF and CCF are
plotted

## Fit a linear steady-state model

fit1 <- lm(frml, X)

## The ACF and CCF

acfccf(fit1, X)
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Still the residuals are correlated in time and to the inputs, hence the model or-
der is increased to p = 2, which is fitted and residuals ACF and CCF plotted

fit2 <- lm(frmlARX(outName = "Ph", inNames = c("Te", "Isol"),

p = 2, inNonLagNames = "Ti"), X)

## The ACF and CCF

acfccf(fit2, X)
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where now only very little significant correlation is left, however it is tried to
increase the model order to p = 3

fit3 <- lm(frmlARX(outName = "Ph", inNames = c("Te", "Isol"),

p = 3, inNonLagNames = "Ti"), X)

## The ACF and CCF

acfccf(fit3, X)
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and the ACf and CCF now shows no significant correlation of the residuals
in time and to the inputs.

4. Model validation. Now we carry out the model validation, as described
on page 31. First the estimated coefficients are checked by writing out the
summary of the p = 3 fit
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summary(fit3)

...

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## Ph.l1 0.1145141 0.0582653 1.965 0.05055 .

## Ph.l2 0.3330523 0.0556390 5.986 8.02e-09 ***

## Ph.l3 0.0007389 0.0245478 0.030 0.97601

## Te.l0 -0.5010150 0.3890118 -1.288 0.19905

## Te.l1 -0.3110348 0.6329659 -0.491 0.62361

## Te.l2 -1.1852874 0.4554511 -2.602 0.00985 **

## Isol.l0 -0.0961939 0.0022995 -41.832 < 2e-16 ***

## Isol.l1 -0.0139482 0.0062612 -2.228 0.02685 *

## Isol.l2 0.0308220 0.0047747 6.455 6.16e-10 ***

## Ti.l0 2.1672014 0.1950562 11.111 < 2e-16 ***

## ---

...

At least one of the coefficients are significant for each input, hence they should
be kept in the model. However the AR coefficients (Ph.l1, Ph.l2 and Ph.l2)
are not all significant. The highest order AR coefficient is not significant,
which leads to conclude that the model order should be decreased by one.
Thus the fit for model order p = 2 is checked and the coefficient estimates
are printed

summary(fit2)

...

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## Ph.l1 0.326806 0.057849 5.649 4.6e-08 ***

## Ph.l2 0.092018 0.026599 3.459 0.000642 ***

## Te.l0 -0.163963 0.428933 -0.382 0.702612

## Te.l1 -1.892024 0.488180 -3.876 0.000138 ***

## Isol.l0 -0.097482 0.002552 -38.204 < 2e-16 ***

## Isol.l1 0.017459 0.005311 3.287 0.001164 **

## Ti.l0 2.264867 0.160558 14.106 < 2e-16 ***

## ---

...

The highest order AR coefficient is now significant, thus the model order
p = 2 is selected as the most suitable model order.
See above for the residuals ACF and CCF for the p = 2 fit, where only very
little correlation was seen. A further check for white noise residuals is carried
out by plotting the cumulated periodogram (CPGRAM)

par(mar = c(3.5, 3.5, 1.5, 0.5), cex = 0.75)

cpgram(fit2$residuals, main = "Residuals CPGRAM for $p=2$")
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which shows that the residuals cannot be tested significantly different from
white noise, since the CPGRAM stays within the two blue lines marking the
95% confidence band for the CPGRAM of white noise.
Furthermore the residuals are plotted over time along with the inputs and
the output (both predicted and measured)

tsPlotResiduals(fit2, X, type = "b")
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No clear repeating patterns are seen in the residuals, except from the appar-
ent higher level occuring 7-8 times related to high levels of solar radiation.
This could be due to only using the south faced vertical radiation as input
to the model, which thus can be seen as an oversimplification of the model
part related to the incoming solar radiation and this could be more elabo-
rated. However for the simple setup this is accepted. However, accepting
the simplified setup the model can now be applied to calculate the thermal
performance, as described in the next step.

5. Calculation of HTC, gA-values and time constants (simple setup). The es-
timated HTC and its standard deviation is calculated

HTCPhAsOutput(fit2)
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## $Hi

## [1] 3.897044

##

## $He

## [1] 3.537635

##

## $H

## [1] 3.969638

##

## $sdH

## [1] 0.0178928

##

## $VarHs

## [,1] [,2]

## [1,] 0.0005365911 0.001608164

## [2,] 0.0016081640 0.007985014

the latter matrix VarHs is the covariance matrix of the two HTCs.
Similarly the gA-value and its standard deviation is calculated

gAPhAsOutput(fit2)

## $gA

## [1] 0.137691

##

## $sdgA

## [,1]

## [1,] 0.003832191

Finally, the time constants are calculated in seconds

timeConstantsPhAsOutput(fit2, Ts)

## $timeConstants

## [1] 2107.216 5314.791

and the step responses for the external temperature and the vertical south
faced global radiation are calculated and plotted

par(mfrow = c(2, 1), mar = c(3.5, 3.5, 1.5, 0.5), cex = 0.8)

stepResponsePhAsOutput(fit2, Ts, inName = "Te")

stepResponsePhAsOutput(fit2, Ts, inName = "Isol")
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Example: Grey-box model for the IDEE
house

In this section an example of selection of a suitable grey-box model for the IDEE
house is presented. The data originates from a series of experiments carried out in
the IDEE test house located at BBRI in Belgium. For details of the building and the
experiments, see (Lethé et al., 2014) and (Jiménez and et al., 2015). The grey-box
model selection procedure presented in Section 4.3 is used and only linear RC-
models are applied. The R code for this example is not included, however it can be
found in the file greyboxForIDEE.R.

For the example an experiment in which the heating power is controlled with a
PRBS is used. First the entire series are plotted:
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It is seen that there are measurements from ten days in the winter period. In the
upper plot the heating power (Φh) is seen as controlled with a PRBS between appr.
1500 W and 3200 W. The middle plot shows the internal temperature around 20 ◦C
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and it can be seen that it reacts to the heating power, as the external temperature
and global radiation, the latter is plotted in the lower plot.

A similar plot of the series zooming in on a single day is generated:
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It is seen that the transients of heating power signal are slightly smoothed. Fur-
thermore, that the global radiation in the early morning is quite low and suddenly
steps up around 09:30, which is most likely caused by shadowing from trees etc.
in the surroundings on both the sensor and the building.

First the simplest feasible model is fitted. This model is denoted with ModelTi. It
has a single state and system equation

dTi =
1

109Ci

(
1

Rie
(Te − Ti) + gAsol Isol + Φh

)
dt + σidωi(t), (I.1)

and the measurement equation

Tr,ti = Ti,ti + εti . (I.2)

It is illustrated with the RC-diagram:
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In order to fit the model to the data the following is executed in R. Note that the def-
inition of the model and initial values can be found in the file functions/sdeTi.R:

Now the model fit is validated, first by plotting the input series with the one-step
ahead residuals:
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It is clearly seen that the residuals are not white noise, due to the high spikes oc-
curring at the shifts of the PRBS of the heating power. This is a clear indication
that the model should be extended with a temperature state in order to describe
the faster dynamics.

The ACF and CPGRAM clearly reveals that the residuals are significantly different
from white noise:
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Thus a state representing the temperature in the walls of the building is added to
extend the model. Thus the two-state model ModelTiTw

dTi =
1

109Ci

(
1

Ria
(Tw − Ti) + gAsol Isol + Φh

)
dt + σidωi(t), (I.3)

dTw =
1

109Cw

(
1

Riw
(Ti − Tw) +

1
Rwe

(Te − Tw)

)
dt + σwdωw(t). (I.4)

The RC-diagram representing the model
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First the model is fitted to the 5 minutes data.

and the input series are plotted with the residuals:
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Clearly now the spikes in the residuals at the shifts of the PRBS are gone. Some
periods with a higher level of the residuals are seen coinciding with fluctuations
of the solar radiation.

The ACF and CPGRAM of the residuals are plotted:
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The residuals are now much closer to white noise, than for the single-state model.
However still the first two lags are significantly correlated. The best way of dealing
with this, when sticking to linear models, is to resample to a lower sampling time.

Since two lags were significant this leads to generating 10 minutes average values,
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which the two-state model is fitted to.

The input series and the residuals are plotted:
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Apparently, the resampling removed high frequency noise (averaging a simple
low-pass filter) revealing some patterns in the residuals, both the previous seen
higher level related to fluctuations in the solar radiation, but also some systematic
deviations in the morning of clear-sky days after the step up in solar radiation
already pointed out from the second plot in this section.

The ACF and CPGRAM of the residuals are plotted.
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Now the residuals are quite close to white noise and the model are thus selected as
a suitable model.

The estimated parameters can now be printed together with estimated standard
deviation (Std. Error), p-values (Pr(>|t|)) and the correlation matrix:

## Coefficients:

## Estimate Std. Error t value Pr(>|t|) dF/dPar dPen/dPar

## Ti0 1.8962e+01 2.3789e-02 7.9708e+02 0.0000e+00 -5.9487e-04 -1e-04

## Tw0 1.7529e+01 5.8182e-02 3.0128e+02 0.0000e+00 4.5806e-04 1e-04

## Ci 1.2949e-03 3.3957e-05 3.8133e+01 0.0000e+00 2.6056e-04 0e+00

## Cw 3.1903e-02 1.3960e-03 2.2853e+01 0.0000e+00 -5.5019e-04 0e+00

## e11 -8.3733e+00 8.2345e-02 -1.0169e+02 0.0000e+00 3.6525e-06 0e+00

## gA 2.4770e+00 8.8489e-02 2.7992e+01 0.0000e+00 2.1658e-05 0e+00

## p11 -1.6335e+01 1.8521e-01 -8.8195e+01 0.0000e+00 3.0704e-05 0e+00

## p22 -6.3727e+00 4.1925e-02 -1.5200e+02 0.0000e+00 -4.4211e-04 0e+00

## Riw 4.6455e-04 8.6279e-06 5.3843e+01 0.0000e+00 3.8021e-04 0e+00

## Rwe 5.3926e-03 1.5192e-04 3.5497e+01 0.0000e+00 -7.9465e-05 0e+00

##

## Correlation of coefficients:

## Ti0 Tw0 Ci Cw e11 gA p11 p22 Riw

## Tw0 0.34

## Ci 0.04 0.05

## Cw 0.01 -0.05 0.21

## e11 -0.04 0.04 0.20 0.02

## gA 0.00 0.16 0.40 0.00 0.23

## p11 -0.01 0.03 -0.03 -0.03 0.15 0.02

## p22 0.01 -0.09 0.09 0.01 -0.35 -0.15 0.01

## Riw -0.05 -0.51 -0.05 0.12 -0.11 -0.31 -0.05 0.27

## Rwe 0.04 -0.04 -0.02 0.05 0.02 -0.10 -0.01 -0.07 0.04

##

## [1] "Loglikelihood 1990"

## [1] "HTC: 171"

## [1] "HTC 95% confidence band: 162 to 179"

## [1] "gA: 2.5"

## [1] "gA 95% confidence band: 2.3 to 2.7"

All p-values indicate that the estimated parameters are significantly different from
zero and no high correlation are found. Hence this validates further the results
and finally the total HTC from the internal to the external is printed together with
its estimated 95% confidence interval, and similarly for the gA value.

Missing a physical validation of the estimated parameters according to some sim-
ple calculations of the properties of the building.

If this model should be further improved it is suggested to include non-linear
parts, such as the model part describing the solar radiation impact e.g. by us-
ing a semi-parametric part allowing the coefficient gAsol to vary as a function of
the time of day.
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Nomenclature

The symbols used are listed in the this section, each with a description and units.
The symbols and definitions are taken as much as possible from the ISO 13790
standard.

Asol Effective area of opaque elements in the building (m2). 14

Ci Effective heat capacity of building interior (internal air, walls, furnitures, etc.)
(J K−1). 22, 23, 51, 73–75

Cw Effective heat capacity of building walls (J K−1). 22, 23, 75

ε The one-step ahead error of a model. Units are the same as the output of the
model. 15, 17, 18, 34, 47, 50

gAsol The gA-value of a building as one variable, which is composed by the prod-
uct of: g total solar energy transmittance of the opaque parts (windows) of
the building and A the effective area of the opaque parts. 13–16, 19, 23, 50–52,
73–75, 78

He Heat transfer coefficient obtained from external temperature related estimates
(W K−1). 15, 19, 48–50

Htot The total heat transfer coefficient (HTC) (W K−1). 13–15, 19, 47, 50, 52

Hi Heat transfer coefficient obtained from internal temperature related estimates
(W K−1). 15, 19, 48–50

Isol Solar irradiation received by the building (W m−2). 13–15, 17, 18, 23, 50, 51,
73–75

Φh Heating power of the heating system (plus other sources: electrical appliances,
etc.) inside the building (W). 13–15, 17, 18, 22, 23, 47, 50, 51, 72–75

φ(B) Polynomial in the backshift operator B related to the AR (i.e. output) part of
an AR(MA)X model. 17–19, 47, 49, 50, 52

ω(B) Polynomial in the backshift operator B related to the inputs of an AR(MA)X
model. 17–19, 47, 49, 50, 52

ω Coefficient in a linear regression or AR(MA)X model. 15, 16, 47–50
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Rfromto Thermal resistance in an RC-model between the elements from and to
(K W−1). 22, 23, 51, 73–75

s Order of a polynomial in AR(MA)X model. 17, 18

Te External air temperature (◦C) (in text simply ’external temperature’). 13–15, 17,
18, 22, 23, 47, 51, 73–75

Ti Internal air temperature (◦C) (in text simply ’internal temperature’). 13–15, 17,
18, 22, 23, 47, 51, 73–75

Tr Recorded (internal) temperature (◦C). 23, 51

Tw Wall temperature (◦C). 22, 23, 75

Heat Transfer Coefficient This is a measure which include both the transmission
heat transfer and ventilation heat transfer, hence a sum of the UA-value
(W/K) and ventilation losses.. 4, 81

∆tsmp Sampling time (s). 19

gA-value The gA-value of a building is the product of: g total solar energy trans-
mittance of the opaque parts (windows) of the building and A the effective
area of the opaque parts. 4, 7, 8, 15–20, 50–52, 61–63, 69, 70

IDEE IDEE house located at BBRI in Limelette, Belgium. For details of the build-
ing and the experiments, see (Lethé et al., 2014).. 6, 72

RRTB Round Robin Test Box. 6, 14, 17, 64
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Acronyms

ACF AutoCorrelation Function. 14, 18, 25, 30–32, 61, 66–68

AIC Akaike Information Criterion. 26

ARX AutoRegressive with eXogenous input. 4, 7, 8, 16–18, 22, 23, 30, 31, 33–35,
50, 51, 64, 66

CCF Cross-Correlation Function. 30, 61, 66–68

CI Confidence Interval. 15

HTC Heat Transfer Coefficient. 4, 7, 8, 14–19, 21, 50–52, 61–63, 69, 70, 79, 81,
Glossary: Heat Transfer Coefficient

PACF Partial AutoCorrelation Function. 18

PRBS Pseudo Random Binary Sequence. 12
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Liège, 2014.

H. Madsen. Time Series Analysis. Chapman and Hall, 2008.

H. Madsen and J. Holst. Estimation of continuous-time models for the heat dy-
namics of a building. Energy and Building, 22:67–79, 1995.

H. Madsen and J. Schultz. Short time determination of the heat dynamics of build-
ings. Technical Report 243, DTU, Laboratoriet for Varmeisolering, DTU Byg,
1993.

H. Madsen and P. Thyregod. An introduction to general and generalized linear models.
Chapman and Hall, New York, 2011.

H. Madsen, J. Holst, and E. Lindström. Modelling Non-linear and Non-stationary
Time Series. IMM, DTU, Lyngby, Denmark, 2007.

B. Nielsen and H. Madsen. Identification of transfer functions for control of green-
house air temperature. Journal Agricultural Engineering Research, 60:25–34, 1995.

B. Nielsen and H. Madsen. Identification of a continuous time linear model of
the heat dynamics in a greenhouse. Journal Agricultural Engineering Research, 71:
249–256, 1998.

H. A. Nielsen and H. Madsen. A generalization of some classical time series tools.
Computational Statistics and Data Analysis, 37:13–31, 2001.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2015. URL https://www.R-project.

org/.

83

https://www.R-project.org/
https://www.R-project.org/


P. Sadegh, J. Holst, H. Madsen, and H. Melgaard. Experiment design for grey-box
identification. International Journal for Adaptive Control and Signal Processing, 9:
491–507, 1995.

R. Sonderegger. Diagnostic tests to determine the thermal response of a house.
ASHRAE Transactions, 91, 1978.

C.-R. D. Team. Continuous Time Stochastic Modeling in R User’s Guide and Reference
Manual. Technical University of Denmark, Lyngby, Denmark, 2015.

84


	Introduction
	Data description
	Statistical descriptive analysis and pre-processing of the data
	Particular aspects to be aware of
	Averaging and filtering
	Aliasing

	Models for estimation of building thermal performance parameters
	Steady state models
	Linear steady state models

	Linear dynamics input-output models (ARX models)
	Grey-box models
	Introduction
	Linear (RC-network) models
	non-linear and non-stationary models


	Model selection and validation
	Basic model selection (identification) techniques
	Basic model validation procedure

	Introduction to time series modelling
	Heat dynamics of a building
	Introduction to time series models
	Input-output (transfer function) models
	State-space models

	Introduction to grey-box models and noise processes
	ODE formulation of the system equations
	Characterization of ODEs

	SDE formulation of the system equations
	Characterization of SDEs
	The grey-box model

	Example: RC model for the heat dynamics of a building

	The family of linear models and their characteristics
	Discrete time models in state space form
	The transfer function form
	Impulse and response function models
	The linear regression model

	Calculation of the HTC, gA-value and their uncertainties
	For models with heating power as output
	Linear minimum variance weighting for estimation of the HTC
	gA-value

	For models with internal temperature as output

	Experimental design; basic principles
	Experimental design considerations
	PRBS signals

	Multiple sensors; how to use all the information
	Example: steady state model for the RRTB
	Example: Linear dynamics input-output ARX model for RRTB
	Example: Grey-box model for the IDEE house
	Nomenclature
	Acronyms

