Webinar How to determine the real performances of buildings? Building characterisation by co-heating January 22, 2014

State-of-the-art on the co-heating test methodology

Geert Bauwens, Staf Roels Building Physics Section, Department of Civil Engineering, KU Leuven

> Frédéric Delcuve Knauf Insulation

Introduction

thermal performance characterisation building fabric

thermal performance characterisation building fabric

co-heating test

Co-heating test

quasi-stationary test

monitored throughout test:

$$\blacksquare \mathbf{S} = \mathbf{T}_{\mathbf{i}} - \mathbf{T}_{\mathbf{a}} \qquad \underbrace{ \cdot \mathbf{i}}_{i} = \mathbf{I}_{i}$$

aggregated data (e.g. daily)

Co-heating test

quasi-stationary test

monitored throughout test:

$$\blacksquare \mathbf{F}_{i} - \mathbf{T}_{a} \quad \checkmark \quad \mathbf{F}_{i'} \quad$$

aggregated data (e.g. daily)

Co-heating test

quasi-stationary test

monitored throughout test:

$$IIII \Rightarrow T_i - T_a \qquad \therefore \qquad \therefore \qquad \therefore \qquad \therefore$$

aggregated data (e.g. daily)

State-of-the-art

Basic heat balance

- building acts as one zone
- thermostatically controlled Ti
- aggregated performance data
- thermal mass in equilibrium

Stationary heat balance T_i

$$\sum Q_i + c = 0$$

- equivalent outdoor temperature

- equivalent outdoor temperature
- thermal lags

a,eq

Stationary heat balance T_i

Linear regression

- stationary heat balance
- aggregated performance data

 $\prod_{i} \bullet \mathbf{T}_{i} - \mathbf{T}_{a} \quad :: \mathbf{Q}_{h} = HLC\Delta T - A_{sw,*}q_{sw,*} + c$

simplifications:

- stationary heat balance
- aggregated performance data

simplifications:

- # independent variables = # parameters
- 🔆 's correlated
- ΔT and $\Delta T_{\rm avg}$ correlated
- influence T_{sky} assumed constant

(ground floor heat loss)

 $\prod_{i} \bullet T_{i} \bullet T_{a}$ $Q_{h} = HLC\Delta T - A_{sw,*}q_{sw,*} + c$

Linear regression analysis:

- simple linear regression (solar corrected Q_h)
- simple linear regression (transformed equation)
- multiple linear regression

 $\prod_{i} \bullet T_{i} \bullet T_{a}$ $Q_{h} = HLC\Delta T - A_{sw,*}q_{sw,*} + c$

Linear regression analysis:

- simple linear regression (solar corrected Q_h)
- simple linear regression (transformed equation)
- multiple linear regression

$$Q_h + A_{sw,*} q_{sw,*} = HLC\Delta T + c$$

linear regression

 $\prod_{i} \bullet \mathbf{T}_{i} - \mathbf{T}_{a} \quad :: \mathbf{Q}_{h} = HLC\Delta T - A_{sw,*}q_{sw,*} + c$

Linear regression analysis:

- simple linear regression (solar corrected Q_h)
- simple linear regression (transformed equation)
- multiple linear regression

- linear regression through data points
- -- designed heat loss coefficients

 $\prod_{i} \bullet T_{i} \bullet T_{a}$ $Q_{h} = HLC\Delta T - A_{sw,*}q_{sw,*} + c$

Linear regression analysis:

- simple linear regression (solar corrected Q_h)
- simple linear regression (transformed equation)

- multiple linear regression

Visualisation

Multiple linear regression $Q_h = HLC\Delta T - A_{sw,*}q_{sw,*} + c$

Multiple linear regression $Q_h = HLC\Delta T - A_{sw,*}q_{sw,*} + c$

Reliability

- 4 factors influence co-heating test reliability
- duration of experiment
- weather conditions
- test case
- analysis method

- 4 factors influence co-heating test reliability
- duration of experiment
- weather conditions
- test case
- analysis method

- 4 factors influence co-heating test reliability
- duration of experiment
- weather conditions
- test case
- analysis method

one year worth of data

days

- 4 factors influence co-heating test reliability
- duration of experiment
- weather conditions
- test case
- analysis method

```
start date (weather)

\downarrow

one year worth of data

0 \leftrightarrow duration
days
365
```

- 4 factors influence co-heating test reliability
- duration of experiment
- weather conditions
- test case
- analysis method

- 4 factors influence co-heating test reliability
- duration of experiment
- weather conditions
- test case
- analysis method

Fixed test case & analysis methodology:

Fixed test case & analysis methodology:

Zero intercept, winter data, solar radiation, thermal lag

Reliable results:

- appropriate analysis method
- sufficient duration
- winter measurements (high mean Q_h)

Test Case: Terraced house in Herstal, Belgium

- extended co-heating test: February - May

coheating test set-up

- 2.w

heat flux and surface temperature sensors

coheating test set-up

heat flux and surface temperature sensors

blowerdoor measurements

air change rate measurements BBRI

Sian'

- extended co-heating test: February May
- 2 renovation steps:

STEP 1

- blowing in insulation in façade and party wall cavities
- insulating the attic floor slab

STEP 2

- insulating floor above basement

Co-heating measurement data

Co-heating analysis result

before \rightarrow after step 1

Co-heating analysis result before \rightarrow after step 1

Co-heating test to assess thermal performance of buildings

Stationary analysis of quasi-stationary test

Limited model complexity

Underlying physical phenomena identified

Multiple linear regression and visualisation

Reliability

Renovation induced performance improvement: co-heating test

Webinar How to determine the real performances of buildings? Building characterisation by co-heating January 22, 2014

State-of-the-art on the co-heating test methodology

Geert Bauwens, Staf Roels Building Physics Section, Department of Civil Engineering, KU Leuven

Thank you

Frédéric Delcuve Knauf Insulation