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Simplified heat balance

being lost in calculating the lagged variables.

At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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4 Stationary modeling of a dynamic system

Performing a co-heating test is just a first step. In order to reliably quantify the
building’s thermal performance (e.g. HLC), the acquired measurement data
needs a tailored data analysis. The equations briefly mentioned before stem
from simplified stationary heat balances of a dwelling: one zone sheltered from
outside weather conditions by a building fabric. Here, the physical phenomena
working behind the scenes will be identified, resulting in an extended heat bal-
ance equation. In a next step, we distill from this a simplified version that is
assumed in the actual co-heating data analysis. Hence, the different assumptions
hidden in the simplified heat balance can easily be retraced.

Buildings essentially constitute thermal dynamic systems, that are effectively
modelled as lumped state space models, or equivalently as a system stochastic
differential equations (SDE’s). As such, the building is modelled as series of
thermal (e.g. an indoor air temperature node or a node in the capacitive building
fabric, among others). Such nodes, generally referred to as system states, bear a
certain capacity (C) to charge or discharge heat and are linked through thermal
resistances (R). Assuming we distinguish k states, the buildings heat balance
can be written as:


Qk + c = Ck

dTk

dt
(7)

where c encapsulates the system and measurement noise.

Assuming that the whole building acts as one zone and only considering the
indoor air temperature Ti as a state, the building heat balance can be written
as one SDE:


Qi + c = Ci

dTi

dt
(8)

Given a thermostatically controlled indoor air temperature Ti, given appropri-
ately aggregated performance data and given efforts made during the experiment
to diminish thermal charging and discharging of the buildings’ thermal mass,
dTi

dt in Eq. 8 can be assumed to be zero. Accordingly, the heat balance is
simplified to its stationary form:


Qi + c = 0 (9)

This stationary heat balance represents only a crude modeling of the actual
dynamic building response. For instance, the heating power Qh is assumed to
go straight to Ti. An assumption that only holds in the stationary case, i.e.
when the thermal mass is charged to a certain equilibrium level, or equivalently
when no heat is being charged/discharged by building components. In reality,
this situation is never fully reached due to dynamic weather conditions, e.g.
solar gains charging the buildings’ thermal mass. The considered heat loss and
heat gain mechanisms are illustrated in Figure ?? and collected in Eq. 10.

Qh +Qsw − (Qtr −Qs,sw +Qs,lw)−Qv −Qlatent + c = 0 (10)

where Qh is the energy supplied by heaters and dissipated by ventilators; Qsw

solar gains through transparant fabric parts; Qtr transmission heat loss through
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

∗,o

UoA∗,o∆Tavg +

∗,w

UwA∗,w∆T

+

∗,o

UoA∗,oclw,∗,o +

∗,w

UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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where c encapsulates the system and measurement noise.
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indoor air temperature Ti as a state, the building heat balance can be written
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
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dTi
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(8)
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Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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being lost in calculating the lagged variables.

At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

∗,o

UoA∗,o∆Tavg +

∗,w

UwA∗,w∆T

+

∗,o

UoA∗,oclw,∗,o +

∗,w

UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

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UoA∗,o∆Tavg +

∗,w
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+

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UoA∗,oclw,∗,o +

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UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.
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being lost in calculating the lagged variables.

At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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Linear regression analysis:	

- simple linear regression
  (solar corrected      )

- simple linear regression
  (transformed equation)

- multiple linear regression		

α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

∗,o

UoA∗,o∆Tavg +

∗,w

UwA∗,w∆T

+

∗,o

UoA∗,oclw,∗,o +

∗,w

UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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Linear regression analysis:	

- simple linear regression
  (solar corrected      )

- simple linear regression
  (transformed equation)

- multiple linear regression		

α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +
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UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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mentioned cases, a non-zero intercept is possible due to discrepancies be-
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Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗
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(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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Figure 3: Estimation of HLC and Asw,∗ by applying simple linear regression.
The curved arrows indicate the slope of the regression line.

5.3 One graph to rule them all

Regardless of its visualisation advantage, the single linear regression based on
the mathematical transformation presented in Eq. 20 needs to be applied with
caution: it can be shown that it is unstable when ∆T hovers around 0, causing
qsw,∗
∆T and Qh

∆T to take on extreme values (towards +−∞). Therefore, the second
method, applying multiple linear regression, is advised.

A primary reason why multiple linear regression is not adopted regularly in
literature, is that it is not easily visualised. Figure 4(a) illustrates this. How-
ever, by considering ∆T and qsw,∗ as independent variables and projecting the
regression surface to the (Qh,∆T ) surface, a two-dimensional representation is
within reach.
Figure 4(b) illustrates this: the sloped line represents the intersection of the
regression surface with the (Qh,∆T ) surface (qsw,∗ = 0). From this line, a
layered flag is hanging downwards, showing contour lines corresponding to the
discrete, averaged qsw,∗ observed during the test period. The contour lines are
parallel translations of the regression surface intercept (Eq. 21 and Figure 4(b)).
The downward hanging flag effectively shows the spread of aggregated ∆T (flag
width) and qsw,∗ (flag height) occuring during the test.

Also here (compare with Figure 3(e)) the HLC is determined as the slope of the
regression line. Additionally, by drawing a vertical line connecting one regression
contour line (Eq. 21) with a translated copy, the solar aperture coefficient Asw,∗
can be determined as a fraction of the traversed Qh and qsw,∗ (Eq. 22).

Qh,i = HLC∆T + (Asw,∗qsw,∗,i + c) (21)

Asw,∗ =
∆Qh

∆qsw,∗
(22)
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being lost in calculating the lagged variables.

At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

∗,o

UoA∗,o∆Tavg +

∗,w

UwA∗,w∆T

+

∗,o

UoA∗,oclw,∗,o +

∗,w

UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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flow through a heavy-weight ground floor, directly on soil and insulated, is also
embedded in this constant. Often,c is rather small, and often, better regression
results are obtained by setting c to zero.

By this time, the link with the brief history on the co-heating test, discussed in
Section 2, has become apparent.

5.2 Linear regression analysis

Assuming the heat balance in Equation 18c to hold, the parameters of interest,
marked red in Eq. 19, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (19)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy can,
e.g. on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made
for the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗
are neglected altogether (Asw,∗ = 0). As illustrated in Fig. 3(e), the
slope of the regression line resulting from a simple linear regression on
this corrected measurement data set yields an indication of the overall
HLC (Bell et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 19 ([Lowe et al.], [Everett et al., 1985]).

- A third method is based on dividing all terms in Eq. 19 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 20.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(20)

As illustrated in Figure 3(f), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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- The energy supplied to the interior under the form of electrical energy can,
e.g. on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made
for the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗
are neglected altogether (Asw,∗ = 0). As illustrated in Fig. 3(e), the
slope of the regression line resulting from a simple linear regression on
this corrected measurement data set yields an indication of the overall
HLC (Bell et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 19 ([Lowe et al.], [Everett et al., 1985]).

- A third method is based on dividing all terms in Eq. 19 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 20.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(20)

As illustrated in Figure 3(f), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

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Asw,∗,wqsw,∗,avg +
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UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
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being lost in calculating the lagged variables.

At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
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Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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underneath the ground floor, the ground floor can be considered as any other
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In any case, heat loss is not uniformly distributed over the ground floor surface
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being lost in calculating the lagged variables.

At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
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fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:
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Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
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Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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Figure 3: Estimation of HLC and Asw,∗ by applying simple linear regression.
The curved arrows indicate the slope of the regression line.

5.3 One graph to rule them all

Regardless of its visualisation advantage, the single linear regression based on
the mathematical transformation presented in Eq. 20 needs to be applied with
caution: it can be shown that it is unstable when ∆T hovers around 0, causing
qsw,∗
∆T and Qh

∆T to take on extreme values (towards +−∞). Therefore, the second
method, applying multiple linear regression, is advised.

A primary reason why multiple linear regression is not adopted regularly in
literature, is that it is not easily visualised. Figure 4(a) illustrates this. How-
ever, by considering ∆T and qsw,∗ as independent variables and projecting the
regression surface to the (Qh,∆T ) surface, a two-dimensional representation is
within reach.
Figure 4(b) illustrates this: the sloped line represents the intersection of the
regression surface with the (Qh,∆T ) surface (qsw,∗ = 0). From this line, a
layered flag is hanging downwards, showing contour lines corresponding to the
discrete, averaged qsw,∗ observed during the test period. The contour lines are
parallel translations of the regression surface intercept (Eq. 21 and Figure 4(b)).
The downward hanging flag effectively shows the spread of aggregated ∆T (flag
width) and qsw,∗ (flag height) occuring during the test.

Also here (compare with Figure 3(e)) the HLC is determined as the slope of the
regression line. Additionally, by drawing a vertical line connecting one regression
contour line (Eq. 21) with a translated copy, the solar aperture coefficient Asw,∗
can be determined as a fraction of the traversed Qh and qsw,∗ (Eq. 22).

Qh,i = HLC∆T + (Asw,∗qsw,∗,i + c) (21)

Asw,∗ =
∆Qh

∆qsw,∗
(22)
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being lost in calculating the lagged variables.

At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

∗,o

UoA∗,o∆Tavg +

∗,w

UwA∗,w∆T

+

∗,o

UoA∗,oclw,∗,o +

∗,w

UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
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Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
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introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:
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Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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6 Conclusions

We believe the combined strategy of taking into account an equivalent outdoor
temperature and an approximate modeling of the thermal lags induced by the
building fabric renders the co-heating test methodology a robust and reliable
methodology.

Qh = HLC∆T + c (24)

Qh = HLC∆T (25)

Qh = HLC∆T + qsw,hor (26)

Qh = HLC∆Tavg + qsw,hor,avg (27)
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being lost in calculating the lagged variables.

At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.
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∆T
= HLC −Asw,∗
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(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

∗,o

UoA∗,o∆Tavg +

∗,w

UwA∗,w∆T

+

∗,o

UoA∗,oclw,∗,o +

∗,w

UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
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Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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6 Conclusions

We believe the combined strategy of taking into account an equivalent outdoor
temperature and an approximate modeling of the thermal lags induced by the
building fabric renders the co-heating test methodology a robust and reliable
methodology.

Qh = HLC∆T + c (24)

Qh = HLC∆T (25)

Qh = HLC∆T + qsw,hor (26)

Qh = HLC∆Tavg + qsw,hor,avg (27)
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weather

being lost in calculating the lagged variables.

At this point, the link with the literature discussed in Section 2 becomes appar-
ent. As both the transmission heat loss and ventilation heat loss are governed by
∆T , they can be grouped into an overall Heat Loss Coefficient (HLC).


Alw,∗

and hwGvP are generally rather small and are, more often than not, neglected.
In Section 4, the influence of taking ∆T ∗ into account is investigated. For the
case study presented in Section 5.2, the influence of the fabrics moisture content
is discussed. For now,


Alw,∗ + hwGvP can be grouped in a constant c:

Qh +Asw,∗qsw,∗ = HLC∆T + c (18)

(19)

Assuming the heat balance in Equation 18 to hold, the parameters of interest,
marked red in Eq. 20, are generally determined by applying simple or multiple
linear regression techniques on co-heating measurement data:

Qh = HLC∆T −Asw,∗qsw,∗ + c (20)

Essentially, three options can be discerned:

- The energy supplied to the interior under the form of electrical energy
can, on a daily averaged basis, be corrected for solar gains and plotted as
a function of ∆T . This correction implies that an assumption is made for
the solar aperture parameter Asw,∗, or that the solar gains Asw,∗qsw,∗ are
neglected altogether. As illustrated in Fig. 2(a), the slope of the regression
line resulting from a simple linear regression on this corrected measure-
ment data set yields an indication of the overall heat loss coefficient (Bell
et al., 2010).

- An alternative to the method described above is to, aside from ∆T , con-
sider qsw,∗ as an additional independent variable explaining the variability
of Qh. Multiple regression techniques allow to determine both HLC and
Asw,∗ in Eq. 20 ([?], [?]).

- A third method is based on dividing all terms in Eq. 20 by ∆T . An equa-
tion is obtained on which a simple linear regression can be performed,
assuming Qh

∆T as dependent variable and
qsw,∗
∆T as independent or explana-

tory variable, as in Eq. 21.

Qh

∆T
= HLC −Asw,∗

qsw,∗

∆T
(21)

As illustrated in Figure 2(b), an estimate of HLC is then given by the
intercept. Asw,∗ represents the downward slope. Hence, this option allows
to depict a multiple linear regression in a two-dimensional configuration.
Note that this mathematical transformation implicitly forces the above
described multiple linear regression through zero. In both of the earlier
mentioned cases, a non-zero intercept is possible due to discrepancies be-
tween the measurement data and the assumed stationary model to which
it is fitted.
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Reliable results:

- appropriate analysis method

- sufficient duration

- winter measurements (high mean      )

						    

α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

∗,o

UoA∗,o∆Tavg +

∗,w

UwA∗,w∆T

+

∗,o

UoA∗,oclw,∗,o +

∗,w

UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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Test Case:
Terraced house in 
Herstal, Belgium
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- extended co-heating test: February - May
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- extended co-heating test: February - May

- 2 renovation steps:	
	
	 - blowing in insulation in façade and party wall cavities

	 - insulating the attic floor slab

	 - insulating floor above basement
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

∗,o

UoA∗,o∆Tavg +

∗,w

UwA∗,w∆T

+

∗,o

UoA∗,oclw,∗,o +

∗,w

UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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6 Conclusions

We believe the combined strategy of taking into account an equivalent outdoor
temperature and an approximate modeling of the thermal lags induced by the
building fabric renders the co-heating test methodology a robust and reliable
methodology.

Qh = HLC∆T + c (24)

Qh = HLC∆T (25)

Qh = HLC∆T + qsw,hor (26)

Qh = HLC∆Tavg + qsw,hor,avg (27)
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

∗,o

UoA∗,o∆Tavg +

∗,w

UwA∗,w∆T

+

∗,o

UoA∗,oclw,∗,o +

∗,w

UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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6 Conclusions

We believe the combined strategy of taking into account an equivalent outdoor
temperature and an approximate modeling of the thermal lags induced by the
building fabric renders the co-heating test methodology a robust and reliable
methodology.

Qh = HLC∆T + c (24)

Qh = HLC∆T (25)

Qh = HLC∆T + qsw,hor (26)

Qh = HLC∆Tavg + qsw,hor,avg (27)
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Co-heating test to assess 
thermal performance of buildings

Stationary analysis of quasi-stationary test

	 Limited model complexity

Underlying physical phenomena identified

Multiple linear regression and visualisation
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Renovation induced performance improvement: 
co-heating test
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α1 + α2 = 1. A similar reasoning and corresponding strategy can be adopted
with regards to solar radiation: qsw,∗,avg = β1qsw,∗(t) + β2qsw,∗(t− 1) (for each
fabric surface orientation ∗). Taking taking into account solar radiation from
the previous day (qsw,∗(t − 1)) as a constituent part of the heat input has the
important advantage that solar gains stored in the interior layers of the building
fabric are effectively accounted for.
These weighted averages are, however, unsuitable to describe physical phenom-
ena associated with a very fast response: (1) the transmission heat loss through
low-capacitive transparant fabric parts and (2) ventilation heat loss.
Aside from that, most of the fabric components can be expected to introduce
thermal lags in the same order of magnitude (e.g. 12 hours). Only the floor
on ground can show a very different behaviour. This specific component might
introduce thermal lags which are considerably greater, up to several weeks, due
to the large soil mass underneath the building being excited along with it. Ad-
ditionally, the ground has a slowly varying temperature, depending on ground
material, boundary conditions and possibly ground water flows. Both factors
serve to explain that ground floor heat losses are likely to be relatively stable
and constant throughout most measurement campaigns, especially when the
floor is insulated. In the specific case where there is a basement or crawl space
underneath the ground floor, the ground floor can be considered as any other
part of the fabric (cfr. Eq. 13d, in which αsw,j,∗ and clw,j,∗ are assumed 0).
In any case, heat loss is not uniformly distributed over the ground floor surface
(e.g. perimeter insulation). This, however, holds for most components.

Based on the above considerations, the heat balance in Eq. 14 can be rewritten
to include thermal lag effects; heat gain and heat loss terms are organised on
left and right hand side, resp.:

Qh +

∗,w

Asw,∗,wqsw,∗,avg +

∗,o

UoA∗,oαsw,∗,oqsw,∗,avg

=

∗,o

UoA∗,o∆Tavg +

∗,w

UwA∗,w∆T

+

∗,o

UoA∗,oclw,∗,o +

∗,w

UwA∗,wclw,∗,w + caGa∆T + cvP + c (15)

Note that, as discussed, thermal lag effects are not considered to affect low-
capacitive transmission heat loss through windows (denoted w), nor ventilation
heat loss. Hence, these terms are accompanied by ∆T , rather than ∆Tavg, in
Eq. 15.

Note also that Eq. 15 assumes the building thermal parameters of interest to
be constant. It does not take into account the dependence of the fabric thermal
characteristics on temperature and moisture content (λ = f(T,w)), nor does
it take the surface heat transfer coefficients’ dependence on ∆T , wind speed
and direction into account. Moreover, it does not take into account possible
variations of absorption αsw,j,∗ and emissivity clw,j,∗ factors and moisture dry-
out rate GvP .
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